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ABSTRACT Recent advances in computer hardware and software, particularly
the availability of machine learning (ML) libraries, allow the introduction of data-
based topics such as ML into the biophysical curriculum for undergraduate and
graduate levels. However, there are many practical challenges of teaching ML to
advanced level students in biophysics majors, who often do not have a rich
computational background. Aiming to overcome such challenges, we present an
educational study, including the design of course topics, pedagogic tools, and
assessments of student learning, to develop the new methodology to incorporate
the basis of ML in an existing biophysical elective course and engage students in
exercises to solve problems in an interdisciplinary field. In general, we observed that
students had ample curiosity to learn and apply ML algorithms to predict molecular
properties. Notably, feedback from the students suggests that care must be taken to
ensure student preparations for understanding the data-driven concepts and
fundamental coding aspects required for using ML algorithms. This work establishes
a framework for future teaching approaches that unite ML and any existing course in
the biophysical curriculum, while also pinpointing the critical challenges that
educators and students will likely face.
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I. INTRODUCTION

Machine learning (ML), as a category of artificial intelligence (Al),
includes a wide variety of methods and tools to train on a set of data
and then create rules or knowledge from the data. In particular,
biophysicists and chemists are interested in the applications to
biochemical and biophysical data and the potential power of these
methods to predict molecular properties, which are important in
driving the structure of biomolecules and enzymatic activity between
protein and substrate, among other macroscopic properties. The
historical use of ML on molecules tracks to the very early days of
computers in the 1960s, which mainly learned parameters in
quantitative structure activity relationships (1). Around the same
time, the first method for encoding molecules into computer-readable
formats, in the form of Morgan fingerprints, was invented (2).
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© 2020 Biophysical Society. applied back to biochemical and biophysical problems (3-5). Later, the
Remington et al. The Biophysicist 2020; 1(2). DOI: 10.35459/tbp.2019.000140 1 of 11

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-15


https://orcid.org/0000-0002-0143-8894

Teach machine learning in biophysics

perceptron method, related to modern day
artificial neural networks became popular to
predict drug efficacy from the early 1970s to
the 1990s (6).

Although the earliest research focused on
small molecules and generally emphasized
drug discovery, this is not the only area for
biophysicists to explore with ML techniques.
According to a recent report about the
Biophysical Society annual meetings (7), there
is a fast-growing trend to adopt ML in a variety
of biophysics-related fields ranging from com-
putational (such as genetic mutational and
sequence-based studies, feature detection and
dimensional reduction of conformational spac-
es, the study of complex kinetics, and force
field parameterization for simulations) to ex-
perimental techniques (such as analyses of
different microscopy imaging techniques). In
aggregate, ML and related applications can be
revolutionary to biophysics. Recent progress in
protein structure prediction illustrates an ex-
cellent example of this revolution.

Biophysicists can determine the 3-dimen-
sional (3D) structures of proteins by using
experimental techniques such as cryoelectron
microscopy, nuclear magnetic resonance, and
X-ray crystallography. However, these experi-
ments are often lengthy and costly, depending
on trials and errors. Thus, protein structure
prediction with a given amino acid sequence
remains a core biophysical challenge, which has
already involved enormous efforts (8-12), such
as supercomputer development (Blue Gene
and Anton) and novel citizen experiments
(Folding@home and Foldit) (13-17). In addition
to the advance in computational power, the
algorithm innovation is critical. As early as 1994,
the first critical assessment of protein structure
prediction (CASP) competition, an event held to
encourage improvement of protein structure
prediction algorithms, had an entry using a
neural network (an ML method) implemented
to predict protein secondary structure within
the SYBYL software program (18). Notably, this
introduction foretold the recent success of
AlphaFold, which used cutting edge ML tech-
niques to predict pairwise amino acid residue
distance and achieve high accuracy in CASP13

(19). In the assessment, the structure prediction
results from AlphaFold were shown to be far
more accurate than any that have come before
in the CASP series. Following this advance, a
variety of ML methods were developed build-
ing off the success of AlphaFold (20, 21), which
likely reflects the remarked difference made by
ML to biophysics.

Acknowledging the growing impact of ML in
the biophysical literature, we provide here an
account of teaching ML principles and applica-
tions within a biophysical elective course. This
effort is outlined by first exploring biophysical
data types with the students and then focusing
on cheminformatics, as it provides an interface
between the chemical building blocks of
biology and data input for computers, before
finally introducing basic ML algorithms to the
students. Along the way, we demonstrate
concrete examples and provide our experience
designing a case study of ML for the students
to complete as a project. This work will aid the
development of teaching tools for educators to
bring ML into the biophysics curriculum.

Il. SCIENTIFIC AND PEDAGOGIC
BACKGROUND

Thanks to many well-publicized examples,
such as the defeat of human masters in the
games of chess and Go, the success of self-
driving cars, the vast improvements of lan-
guage processing, and the success in what
many consider an impossible task of protein
structure prediction, ML methods have gained
widespread popularity. This popularity, howev-
er, has not been adequately embraced by
current biophysical education. On one hand, a
diverse set of cutting edge ML tools has been
made available to the public with the release of
Tensorflow by Google, CNTK by Microsoft, and
(py)Torch by Facebook. These tools are further
supplemented by simpler and more intuitive
libraries, such as SciKit-Learn. On the other
hand, there are still often misconceptions,
concerns, and suspicions about ML from
scientists outside of computer science. Practi-
cally, the often less than transparent algorithms
embedded in ML packages can require careful
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Fig 1. Flow chart of the course structure for a total of 26 lectures. Specifically, “preparation of computer modeling™ for 2 lectures, 3 topics
from “biochemical and biophysical data” to “basic ML for 8 lectures, and “quantum chemistry” and “molecular simulations™ for 8

lectures each.

tuning of a small set of control variables, which
are generally referred to as the hyperpara-
meters. The power of ML (as described in
section I) and the increasing ease of use implies
a necessity to include it in modern biophysical
training, as is currently being done in other
fields such as chemistry (22). It is crucial to
provide the learning opportunity for future
biophysicists to understand the diverse tool kit
in ML methods outside of the well-publicized
versions, recognize strengths and limitations,
and gain the knowledge or ability to apply
them appropriately under different circum-
stances with the correct choice of hyperpara-
meters.

The major pedagogic challenge arises from
the apparent disconnect between the data
science-heavy topic of ML and the more
biologic science-based curriculum. Rather than
setting up a special topic course to only
introduce ML, we experimented with incorpo-
rating ML material into the framework of a
molecular modeling course, which is an elective
for undergraduate and graduate students on a
biophysics track. The course “Special Topics:
Computational Chemistry, Biochemistry and
Biophysics™ (3 credits) offered in the 2019 fall
semester at the University of Vermont (UVM)
was chosen due to the diverse backgrounds of
the students yet common interest in computa-
tional tools. The overall goal of the course is to
provide students with methods on how to
model different molecules in computers and
how to calculate the properties and reactive
pathways, with a special focus on various
molecules of biophysical interest. We selected
3 general topics (biochemical and biophysical
data, cheminformatics, and basic ML) to sup-
plement existing topics in the course (such as
molecular mechanics and quantum mechanics).
The course included 12 students officially
registered, 4 senior undergraduate students

and 8 (mostly in their first year) graduate
students. Each lecture or class was 1 h and 15
min, and the class met twice a week.

Students in the course had diverse training
backgrounds and research interests. However,
all of them generally wanted to learn about
how to use computers to aid chemical or
biophysics research. Because many of the
students did not have an extensive background
in coding and data science, we opted to focus
on providing a practical introduction of ML
with an emphasis on chemical problems, rather
than a comprehensive overview of ML. The
primary goals of this teaching approach were
to introduce students to the topics of bio-
chemical and biophysical data and cheminfor-
matics, guide students through a project that
uses ML for hands-on experience, encourage
students to think like a data scientist, and apply
ML as a future biophysicist or chemist. In the
rest of this work, we discuss the design of
topics, selection of teaching materials, and
assessment, which may be useful for educators
in biophysics and related fields.

lll. MATERIALS AND METHODS

At the beginning of the course, students
learned the basic skills of computer modeling
with commercial software programs, such as
Maestro and Pymol (Schrodinger). They were
also motivated after a tour to the super-
computing center, Vermont Advanced Com-
puting Core, with the state-of-the-art graphics
processing unit cluster DeepGreen at UVM.
With these preparations, we approached the 3
topics of biochemical and biophysical data,
cheminformatics, and basic ML in about 8
lectures, before the introduction of traditional
topics, such as quantum chemistry calculations
and molecular simulations in the rest of the
course (Fig 1). Note that these topics were
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Table 1. Comparison between SMILES and SMARTS.

SMILES

SMARTS

SMILES describes molecules

The resultant molecule of the SMILES string is subject to
searching

Atoms and bonds are specified in SMILES

All SMILES expressions are also valid SMARTS expressions

SMARTS describes patterns

The pattern described by the SMARTS string is matched against
molecules

Unspecified properties are not defined to be part of the pattern
in SMARTS

Most SMARTS expressions are not valid SMILES expressions

carefully organized and taught with our ulti-
mate goal in mind: to critically understand the
current strengths and limitations of ML meth-
ods and rationally grasp the real potential from
the current hype surrounding ML.

We were aware of the challenge to find the
most updated materials at the appropriate level
from a textbook. Therefore, we adopted
teaching materials from 3 areas, including the
tutorials of SMILES (molecular structures) and
SMILES arbitrary target specification (SMARTS;
chemical patterns), the tutorial of RDKit, open-
source tool kit for cheminformatics, and, finally,
the tutorial of DeepChem, a Python library for
deep learning. All teaching materials were
accessible for students via our course manage-
ment system Blackboard.

A. Biochemical and biophysical
data

The primary goals of introducing biochemical
and biophysical data were to help students
understand what biochemical and biophysical
data to include, as well as how to represent,
store, and use biochemical and biophysical
data. Up to September 2019, there were 96
million compounds in PubChem and 76 million
in ChemSpider. Modern drug discovery projects
may have to examine millions of compounds to
find an active one. Associated with each
compound are a large number of properties,
such as solubility, acidity, toxicity, and phase
transitions, affecting mechanism and function
in biophysics. Thus, during the first lecture, we
asked students to discuss the type and size of
data that they generated from teaching or
research labs, as well as how the data were
stored. After encouraging students to think
about how to search for compounds by name,
molecular formulae, structures, and other

features in compound databases, we intro-
duced an overview of the SMILES language, the
SMARTS pattern, and the RDKit tool kit.

B. Chemoinformatics

SMILES is a line notation (a typographic
method using printable characters) for entering
and representing molecules and reactions (3, 4).
SMILES represents a universal, comprehensive
chemical nomenclature, which shows the mo-
lecular structure in a string, facilitating data
storage and efficient searching. As it is com-
monly used in cheminformatics and compound
databases, we introduced the rules to represent
atoms and molecules, with special efforts to
explain the representation of stereochemistry
due to its importance in chemistry and biology
(i.e., double bonds and chiral carbon centers).
To enhance learning, sufficient examples and
exercises were provided during and after each
lecture.

Following the introduction of SMILES, we
demonstrated how SMARTS is useful for
substructure searching. SMARTS is a language
that allows users to specify substructures by
using rules that are straightforward extensions
of SMILES. We started with a simple example
molecule, phenol, due to the biophysical
importance of phenolic compounds (23-25) in
the regulation of lipid and protein activities. To
search in a database for phenol-containing
structures, one would use the SMARTS string
[OH]c1cccccl. For a flexible and efficient
substructure search, the basic rules of SMARTS
were introduced to students. To enhance the
learning effects, we also discussed the compar-
ison between SMILES and SMARTS (Table 1).

Combining SMILES and SMARTS, we intro-
duced several example applications (i.e., sub-
structure searching, molecular similarity
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Fig 2. (A) Chemical structures of heroin (green carbons), morphine
(yellow carbons), fentanyl (pink carbons), and the MCS (teal
carbons) from the output of the example script (Supplemental Fig
S3). In each structure, hydrogen atoms are neglected, oxygen atoms
are red, and nitrogen atoms are green. (B) Heroin (green) and
morphine (yellow) aligned to the morphinan antagonist bound state
of the p-opioid receptor (37).

searching, and molecular fingerprinting) in the
context of RDKit. Short and simple Python
scripts (Supplemental Figs S1 and S2) using the
RDKit library were experimented with by the
students and discussed in detail. To better
engage students, we created several real-life
examples, with the biophysical background
introduced along with the technical ML details.
One of the examples entailed signifying the
structural similarity between heroin, morphine,
and fentanyl, well-known opioids that act on
the same opioid receptor (Fig 2). Although
morphine and heroin appear to have similar
molecular structures, fentanyl appears quite
distinct. We provided rational measurements of
the similarity by using the fingerprint similarity
(numeric measurement; Supplemental Fig S2)
and the maximum common substructure (MCS,
Supplemental Fig S3), which further inspired
students to think about the reasons why these
2 compounds act on the same receptor protein,

Teach machine learning in biophysics
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Fig 3. Image (generated by the RDkit tool) of a compound set used
to demonstrate the concept of molecular fingerprinting.

as well as the deeper reason for the ongoing
fentanyl crisis. Students were encouraged to
modify the scripts (provided in the Supplemen-
tal Material) for exercises and share thoughts
during the in-class discussions.

Another aspect of cheminformatics as well as
biochemical and biophysical data types is at the
apex of the challenge presented by teaching
ML to students with relatively little data science
knowledge. To approach this challenge, we
chose to include course presentations on
various biochemical and biophysical data types
early on to assist the students in recognizing
that the abstract idea of a chemical species can
be quantified into numeric data. We started
with basic 3D structural data file formats (e.g.,
Xxyz and .pdb), as the spatial coordinates of a
molecule represent arguably its most obvious
numeric representation, before moving onto
molecular fingerprints (2), which instead quan-
tify the presence of different functional groups.
In other words, molecular fingerprints encode
molecular structures into a series of binary
digits that represents the presence or absence
of particular substructures (the so-called keys).
Examples explored by the students are shown
in Table 2 and Figure 3. Molecular fingerprints
were chosen as they appeal to the chemical
intuition that students develop in other chem-
istry courses, such as general, bio-, or organic
chemistry (which are often part of a biophysical
curriculum). In these courses, students are

Table 2. Design of simple molecular fingerprints. The fingerprints for the molecules shown in Figure 3 (numbered 1 to 6) are generated

with the listed fingerprint keys.

Fingerprint keys

Molecular number cccecc [N,n,0,0] [NX3] Nccccc CaaaaO c(e)(c)c
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 1 0 0 0 0 1
4 1 1 0 0 0 1
5 1 1 1 1 0 0
6 1 1 0 0 1 0
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taught to break apart a complex molecule into
functional groups and to consider how the
presence of each group affects the molecule’s
properties, a concept that is fundamental to
molecular fingerprints.

Note that the example molecules were
selected arbitrarily for proof of concept in the
reported practice. In a future biophysics course,
an instructor should pick more biophysically
relevant examples and exercises. For instance,
after showing the example illustrated in Table 2
and Figure 3 in class, we recommend carrying
out a student assignment to design new
molecular fingerprints (by focusing mainly on
the fingerprint keys) for a group of preselected
biophysical molecules (e.g., the natural amino
acids, nucleic acids, or key intermediates
involved in a biosynthetic pathway such as
glycolysis). On the basis of the results reported
in our article, we envision that having students
design a minimal number of keys for a
fingerprint that captures the similarities among
amino acids will further foster the abilities to
generalize the fundamental concepts explored.
A detailed example for this process (illustrated
for 5 amino acids) is provided in section 4 of the
Supplemental Material.

C. A case study of ML

To introduce students to the concept of ML,
we started by building on the students’ prior
understanding of regression analysis and cali-
bration curves. However, as a key distinction to
regression analysis, we explained to the stu-
dents early on that the choice of an ML
algorithm can introduce greatly enhanced
flexibility for determining relationships be-
tween the input and output data, compared
with the relatively simple model functions
commonly used for regression analysis. Fur-
thermore, at the start of class, we also provided
a brief overview of ML, as well as a number of
nomenclature distinctions to help the students
further explore ML on their own time. For
example, we addressed questions such as in
the following (see the ML “cheat sheet” in the
Supplemental Material for additional informa-
tion provided to the students): (a) What is
supervised and unsupervised learning? (b)

What is the distinction between Al and ML?
() What are the different categories and
applications of ML (26)? Overall, we strongly
encourage the teaching of ML principles
through the lens of explorative learning,
instead of directly lecturing students on the
benefits of individual models. To meet this aim,
we approached and focused this learning
module on a case study of aqueous solubility
prediction. Teaching ML principles with explor-
ative learning was chosen as the students
(much like in an ML algorithm) were to try
different approaches to solving a problem and
to learn mostly independently which of the
many available models is best able capture
patterns present in the data. Overall, the
primary aim of our discovery-based approach
toward ML was to empower students with
better intuition, rather than with the high-level
and abstract mathematic representations of ML
models that are often presented in a more
classic lecture or presentation-style class.

Aqueous solubility is a key physical property
for biophysicists because solubility affects the
uptake and/or distribution of biologically active
compounds. The ability of a compound to
partition into different components of the cell
influences what targets it can reach and
ultimately affects its potential efficacy. Accurate
equilibrium solubility determination is a time-
consuming experiment, and it is useful to be
able to assess solubility in the absence of a
physical sample. With ML, it is viable to develop
a simple method for estimating the aqueous
solubility of a compound directly from its
structure. The data set provided by an early
article by Delaney (27) contains 2,874 measured
solubilities. We prepared the data file in the
simple comma-separated value format, with
the first few lines of the file shown to the
students. With data from the last 2 fields
labeled as “SMILES” and “measured log
solubility in moles per liter,” we constructed
our ML model, with the Python script provided
in the Supplemental Material.

Although there are many different ML
algorithms, we chose the random forest (RF)
model to learn the structure-solubility relation-
ship from the molecules and compounds in the
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training set. The algorithm of RF was explained
in detail during the class (Supplemental Fig S4).
Briefly, the RF model is composed of multiple
decision trees. These decision trees are trained
on preclassified input data (in this case, the
chemical solubilities along with SMILES strings
for many molecules), which allows the trees to
learn some heuristics from the input data and
“decide” what is the correct class to be in. The
RF then polls all of the individual trees and
takes the most popular classification as the
correct answer. Then, we prepared the data set
(e.g., featurization, splitting), fitted simple
learning models to our training data and
evaluated the model on the validation set to
determine its predictive power, constructed
stronger models and optimized hyperparame-
ters, and made the predictions. With the
detailed introduction of the breakdown, stu-
dents could see an example of how each stage
of the ML process ultimately affects the
predictive power.

IV. RESULTS AND DISCUSSION

A. Assessing the learning effect
with a student competition to
design an ML method to predict
PKa

The pH across different tissues and organ-
elles can vary greatly from 4 to 8 and is an
important property that affects the intrinsic
activity and self-assembly behavior of biologic
molecules (28, 29). The choice of pK, for this
competition was influenced by the accessible
data and the biophysical importance.

It is often key but challenging to assess the
learning outcomes when new concepts or
techniques are introduced (30, 31). To provide
data and evidence for future course improve-
ment and implementation, we designed a
student activity and a survey. First, the activity
was formatted as a competition, with bonus
points for the final grade as the prize. At the
beginning of the ML topic, students were asked
to collect training data and prepare an ML
model that would best predict the pK, values of
10 undisclosed molecules, revealed on the
competition day by the instructor. This moti-

Teach machine learning in biophysics

vated the students to think creatively in
attempts to design superior algorithms. Thus,
the inherent complexity of the task and the
students’ relative unfamiliarity with program-
ming encouraged cooperation and the ex-
change of advice. The class was split into 2
teams, with a nearly even distribution of
graduate and undergraduate students. Each
team was led by a student with programming
experience. Given the limited data size, stu-
dents were able to run the programs on a
laptop.

In 3 weeks, both teams adopted similar
approaches. The team programmers familiar-
ized themselves with the free-to-use Python
application programming interfaces, including
RDKit (32) for cheminformatics and SciKit-Learn
(33) for ML. They adapted example scripts from
online ML tutorials to produce functioning
models. This involved converting SMILES to
readable formats and one-hot encoding chem-
icals on the basis of the functional groups. The
other members of each team were tasked with
collecting data in the form of molecules, the
SMILES strings, and pK, values in dimethyl
sulfoxide (DMSO). Teams used databases (e.g.,
the Bordwell pK, table; 34) and literature (35,
36) to ultimately compile 200 to 400 data
points (which are experimentally determined
pK, values of organic molecules in DMSO and
the corresponding SMILES strings; see the
Supplemental Material for details). Team pro-
grammers used the respective data sets to
optimize parameters for pK, prediction.

At competition time during the last class for
the ML topic, the students first computed the
chosen fingerprints for the 10 test compounds
before running the ML algorithms to predict
the pK, values. The results of the 2 groups are
shown (Fig 4 and Supplemental Table S1),
which demonstrate the challenges of the ML
models designed by the students. Group 1 had
the greatest range in predicted pK, values from
a minimum of 10 to a maximum of 24, while
the pK, group 2 only had a range of 17 to 25.
Neither group was able to correctly capture the
high and low pK, values. As ML models are only
as good as the training data sets, having the
students report summary statistics for pK, from
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Fig 4. A scatter plot of pK, values for the 10 test compounds chosen
by the teacher with actual values from literature (22-24) on the x
axis and predicted values on the y axis for the 2 groups respectively.
The line y = x is plotted as a dashed line.

these training sets (e.g., mean, range) would
better allow them to assess why these models
failed to predict the test compounds. Another
aspect to improve this project would be to
compute the maximum molecular similarity of
each test compound with all other compounds
of the training sets. This would allow students
to recognize that the predictive power of the
model is limited by how similar molecules in
the test set are to molecules the ML algorithm
was trained on.

The students found that a critical stage of the
hands-on application of the ML algorithm was
hyperparameterization. From a biophysical or
chemical standpoint, this is simultaneously
often the most intriguing and difficult aspect
of the computational technique. For example,
in contrast with chemical intuition, it was
observed by students during the project that
removing consideration of alcohols and ke-
tones improved pK, predictions. Similarly, the
inclusion of thioketones improved results.
Therefore, directing the in-lecture focus to the

process of parametrization, the phenomena of
underfitting and overfitting, and the purpose of
random variables inherent to RF algorithms
would improve both an understanding of
fundamental ML and the relevance to biophys-
ics.

B. Assessing student experience
with ML by using a student survey

Following the completion of the competi-
tion, students were asked to respond to 3
questions: (@) What did you learn from the pK,
ML project and related lectures? (b) What did
you like most when working on the project,
and are you going to read or study the related
topics? (c) What improvement can we imple-
ment for teaching ML and related topics in the
future? These questions were formulated to
provide insight into the effectiveness of the
teaching approach, the interest the students
had in the topic, and future improvements that
could be made, respectively. A graphic sum-
mary of students’ responses in this survey is
shown in Table 3.

The most common response to question (a)
centered on how the students gained recogni-
tion that ML allows predictions to be made
from a large, high-quality data set. Further-
more, the students recognized similarities
between ML algorithms and calibration curves
they were already familiar with. Importantly,
students reported 2 fundamental aspects of
successful ML applications: larger training data
sets increase the effectiveness of ML and the
choice of the inputs (fingerprint keys) affects
the accuracy of ML. Because ML technologies
are becoming more widespread in our society
and there is a sense that they are a “black box”
and outside of human control, one response by
a student was extraordinarily appropriate: “I
thought it would be straightforward and
automatic; instead, there was a lot of param-

Table 3. Summary of the students’ responses to the 3-question survey about the pK, prediction using the ML project.

Learning outcomes Interest in ML Future suggestions

Multitude of applications
More ML algorithms
Coding and computer science

Predictive power
Better data = better predictions
Human choice of input affects machine output

More coding examples
More preliminary ML assignments
Better distribution of workload in groups
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eterization work to be done on the human
end.” We believe that such a response high-
lights that ultimately humans still control an ML
algorithm, and it further emphasizes the
educational utility of providing a hands-on ML
project to future chemists who may move into
a workforce in which successful implementa-
tion or understanding of ML will be advanta-
geous. In particular, teaching ML in this hands-
on manner helps demystify the black box
nature of ML.

In response to question (b) about the
students’ interest, the most common responses
were about how they wanted to apply ML
algorithms to more applications such as their
own research, drug discovery, quantum com-
puting, and even biophysical or chemical
structure prediction. Students also suggested
that they would like to learn more about the
different types of ML algorithms themselves.
The genuine excitement about the topic
suggests that this is a promising area of
biophysical education research that should be
explored further. Finally, even though students
struggled with the programming (as evident by
responses to question (c) in the following), they
actually enjoyed the coding that they were able
to do, wanted to learn a programming lan-
guage, and even showed interest in taking a
computer science course in which they could
learn more.

To the final question (c), student criticism
generally fell into 2 categories: programming
preparation and group assignments. Overall,
most students felt that they did not have the
programming knowledge necessary to prepare
ML models. This was due, in part, to it not
being made clear that groups could modify
RDKit and DeepChem example codes covered
in class but mostly due to a general lack of a
programming background. As a result, mostly
team programmers worked on the ML code.
The true significance of the programming
portion is to introduce students to the structure
of computational biophysics or chemistry code,
not to teach them to design such a code. Class
examples that highlight crucial lines of code
and worksheets that involve filling in certain
keywords or comment blocks along an example

Teach machine learning in biophysics

script would help highlight important process-
es and more efficiently ingrain fundamental ML
ideas. Applying these concepts to the project
could make it more accessible to those with
little or no programming background.

It was suggested by students to include
more assignments before the project, as they
found that the process of programming models
themselves clarified key ML concepts. The
suggestions of more assignments emphasize
new opportunities for this framework to be
further embedded in a biophysics curriculum,
where initial ML assignments and concepts can
be taught along with initial biophysics con-
cepts. For example, while introducing amino
acids and which ones are considered charged,
students could be simultaneously taught to
train a simple ML algorithm to predict which
amino acids are charged by giving it sequences
and the total charges of those sequences. The
methods of ML can be increased in complexity
along with predicting more complex proper-
ties, such as alpha helicity, thus allowing
courses to be properly adjusted to student
abilities, as well as giving a broad method for
this framework to be embedded in a variety of
biophysics courses. This highlights the impor-
tance of hands-on experience, a theme appli-
cable to teaching computational biophysics
and teaching more generally.

C. Transferability of our materials
to other courses in a biophysics
curriculum

On the basis of our findings and the
molecular focus in the design, it is viable to
teach ML in most existing core or elective
courses in a biophysics curriculum, at either the
undergraduate or the graduate level.

(@) For instance, all the small molecule exam-
ples are directly applicable to the core
components in an undergraduate curricu-
lum, such as general chemistry, organic
chemistry, and introductory molecular biol-
ogy and biophysics.

(b) With preparation of simple Python scripting,
the breadth or depth can be readily
increased for a graduate-level course with
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more profound discussions about various
ML methods and applications. For example,
the neural networks for protein structure or
function prediction may be suitable to
incorporate into advanced biophysical
courses that discuss macromolecular struc-
tures and functions.

(c) The materials used in this work can inspire
further development of course resources to
introduce biophysical lab techniques, such
as spectroscopy and microscopes. In prac-
tice, it will be critical to determine the
suitable level of depth for teaching the
theory behind ML, for example, with con-
sideration given to the learning goals of the
specific course, as well as to student
preparation and interests. Further, it may
be helpful to use outcome-based design
(31), which sets teaching or learning goals
early in the course and allows for timely
adjustments during the actual teaching
practice.

V. CONCLUSION

Aiming to overcome the challenge of
teaching ML to students in biophysics and
related fields, we describe an educational
study, including the design of data and ML-
related topics in an existing biophysics elective
course, pedagogic tools, and assessments of
student learning, to develop the new meth-
odology to teach the basis of ML and engage
students in exercises to solve chemical prob-
lems with some biophysical applications.
Direct assessment of the learning effect with
a student competition allowed students to
recognize the predictive power and limitations
of current ML methods. Indirect assessment
with a simple, effective student survey re-
vealed the importance of student preparations
and hands-on experience for the teaching and
learning of ML. These assessments provide
new directions to implement changes for our
future practice (e.g., computational labs and
outcome-based course design). In summary,
this work establishes a framework for future
teaching approaches that unite ML and any
course in the existing biophysical curriculum,

while also identifying critical challenges during
teaching and learning of this important topic.

SUPPLEMENTAL MATERIAL

Further information on the design of the student compe-
tition, student survey analysis, example Python scripts, and
machine learning resources and tutorials, with additional
figures and tables, is available at: https://doi.org/10.35459/
tbp.2019.000140.51.
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