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ABSTRACT Self-organization is ubiquitous in biology, with viruses providing
an excellent illustration of bioassemblies being much more than the sum of their
parts. Following nature’s lead, molecular self-assembly has emerged as a new
synthetic strategy in the past 3 decades or so. Self-assembly approaches promise to
generate complex supramolecular architectures having molecular weights of 0.5 to
100 MDa and collective properties determined by the interplay between structural
organization and composition. However, biophysical methods specific to
mesoscopic self-assembly, and presentations of the challenges they aim to
overcome, remain underrepresented in the educational laboratory curriculum. We
present here a simple but effective model for laboratory instruction that introduces
students to the world of intermolecular forces and virus assembly, and to a cutting-
edge technology, atomic force microscopy nanoindentation, which is able to
measure the mechanical properties of single virus shells in vitro. In addition, the
model illustrates the important idea that, at nanoscale, phenomena often have an
inherent interdisciplinary character.
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I. INTRODUCTION
Manifestations of spontaneous self-organization across scales, a

hallmark of biologic growth, have captured the imagination of
mathematicians, biologists, and physicists alike since the earliest days
of molecular biology (1, 2, 3). The structures spontaneously formed by
the basic molecular building blocks of living matter, such as lipids,
nucleic acids, and proteins, have continued to guide the study of
molecular self-assembly driven by noncovalent intermolecular forces
and inform a myriad of new technologies in health and energy
sciences (2, 4–7).

Viruses are a diverse group of replicating complexes, devoid of their
own metabolism, and obligated to their host for essential functions
(8). They constitute a unique paradigm in self-assembly because,
unlike the majority of synthetic self-assembling complexes, virus
particles are often identical at every scale. Viruses have evolved
features, such as stoichiometric control, chemical addressability, and
reconfigurability, of a sophistication that continues to surpass
synthetic self-assembled nanomaterials. These innate characteristics
are desirable and potentially critical for many future technologies,
such as sustainable energy harvesting (9–11), high latency information
storage (12, 13), and nanomedicine (14, 15), in particular, for
therapeutic delivery (16) and imaging applications (17–19). Thus,
virus organization provides inspiration for innovative, bioenabled self-
assembling nanocompartments (20–22), and virus-enabled devices
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include photosynthetic systems with efficient
energy and electron transfer (23) and higher
order complex coupled catalysts (24, 25). In this
context, of major interest are virus phenomena
and properties concerning assembly, stability,
and transformation of viruses that are transfer-
rable by design to an artificial system (26).

At the most basic level, a virus consists of a
protein cage (sometimes enveloped in a lipid
layer), which encapsulates genomic molecules
required for self-perpetuation within a host.
Inside the protein cage, known as the capsid,
the cargo (mainly genomic ribonucleic acid
[RNA] or deoxyribonucleic acid) is often pack-
aged at densities approaching those of a 3-
dimensional (3D) crystal (27, 28). Although
assembled through much weaker interactions
than covalent bonding, and from hundreds to
thousands of subunits, the capsids of many
viruses from all domains of life show structural
similarities. They are often symmetric and
remarkably monodisperse (Fig 1; 29–32) be-
cause viruses are faced with a challenge: their
genomes have to fit into the limited space of a
viral capsid, but at the same time, they need to
encode all virus proteins. This challenge is
solved by using many identical copies of a

small protein subunit, which are assembled to
form a large capsid.

A host of fundamental questions arise: What
role does curvature play in assembly kinetics
and capsid thermodynamics? What are the
determinants of capsid size? How are dynamics,
such as transport across the shell and contact
mechanics, influenced by spatial organization?
What role do the intrinsic defects encountered
in spheric crystallographic lattices play in virus
mechanochemistry? Theoretic work is currently
leading the way in addressing these questions.
However, there is still a strong need for
experiments, especially at the scale of a single
particle. Answering those questions through
theoretic modeling and in vitro experimenta-
tion could inform far more than the biophysics
of viruses. Thus, focusing on the physical basis
of function, such questions are important
because they promise to establish a foundation
for new design principles in future bioinspired
materials. For instance, the biologic advantage
of size monodispersity in certain viruses still has
to be determined. However, one possible
reason is the efficiency of the cell entry process
(33, 34). Testing this hypothesis and under-
standing what ensures the astonishing preci-
sion of the assembly process could inform the

Fig 1. Viruses having their genomes protected by an icosahedral protein cage span a broad range of sizes. The number of proteins in the
shell obeys geometric selection rules captured by several theoretic treatments (29–31). Inset: virus colors describe the number of protein
chains in each capsid, adapted from (32).

Virus biomechanics

Thompson et al. The Biophysicist 2020; 1(2). DOI: 10.35459/tbp.2019.000106 2 of 11

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-22



design of artificial drug delivery vectors. In
teasing out the structure–function relationship
it is often required to experiment with and
model the collective behavior of molecules that
make a virus (21, 35). However, the highly
successful methods of structural molecular
biology are more apt to interrogate molecular
properties in atomic detail than collective
phenomena. For instance, looking at the atomic
structure of a virus or artificial viruslike particle
designed to operate as a delivery vector would
provide little (if any) information on the stored
mechanical stresses that might influence how
the virus interacts with a cell membrane. Thus,
the large number of atoms and temporal
dynamic range relevant to virus assembly are
challenging to theoretic methods with atomic
precision (although tremendous progress has
been made in the past decade) (35). Most
efforts have relied on reduced models that
retain those physical aspects, which are hy-
pothesized to be essential. On the basis of
these models, computational approaches have
generated a wealth of testable hypotheses (36–
40). Model validation requires comparison with
experiments. The challenge resides in meeting
coarse-grained modeling ‘‘midway’’ from the
complexities (and uncertainties) of the natural
virus environment. In vitro controlled, single-
particle mechanochemistry experiments, such
as atomic force microscopy (AFM) nanoinden-
tation, amplitude modulation AFM techniques
(41, 42), and optical tweezers (43), have
revolutionized our understanding of the mech-
anisms of viral genome packaging and presen-
tat ion (44–46) . However , introducing
experimental approaches on the basis of force
transduction at the nanoscale has been slow to
percolate in the experimental biophysics and
chemical physics curriculum. The present article
aims at addressing this need.

II. SCIENTIFIC AND PEDAGOGIC
BACKGROUND

We present laboratory experiments, amena-
ble to lecture demonstrations or stand-alone
undergraduate laboratory projects, which illus-
trate the basic concepts encountered in icosa-

hedral virus assembly and nanoindentation by
AFM.

A. Objectives
Most students are familiar with the basic

ideas of crystallography and close packing in 2-
and 3D flat space from general chemistry
courses, which often include an introductory
section to the structures and types of solids. In
flat space, close packing is ensured by local
hexagonal symmetry, which can extend freely
throughout the entire space. On a sphere,
however, local symmetry cannot propagate
throughout. In this case, the growth of a
hexagonally packed layer is said to be geomet-
rically frustrated (47). Therefore, any tiling of
the surface of a sphere needs to incorporate
packing defects, i.e., subunits with a different
coordination number than the rest of the
lattice. Unlike in the flat space, where defects
arise due to kinetics, here students encounter,
for the first time, intrinsic defects due to
geometric frustration, which must be present
in the ground state.

Our objectives are 2-fold: First, we illustrate
with a simple experimental model the rules for
generating a polyhedral shell assembled by
using the same interfacial interactions over and
over again, with small necessary deviations due
to the presence of intrinsic defects (Fig 2A).
Second, we use the same experimental model
to study the mechanical properties of polyhe-
dral shells under uniaxial stress, with a scaled-
up mechanical setup that mimics virus nano-
indentation and is based on the same optical
lever idea as the AFM (Fig 2B).

B. Geometric principles of
icosahedral cage construction

When coat proteins spontaneously assemble
into a sheet, the maximum number of contacts
for every subunit is 6. Assuming the free energy
drop at assembly is proportional with the
number of contacts, Caspar and Klug suggest
a geometric model that maximizes the number
of contacts in constructing a closed polyhedral
shell with quasi-identical subunit–subunit in-
terfaces (29). For isometric particles (i.e., shells
that measure equally from a center) the point-
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group symmetry is cubic (48). Within this
group, the regular polyhedron with the largest
volume-to-surface ratio is the icosahedron.
Indeed, the smallest viruses build icosahedral
capsids consisting of 60 copies of a single, small
protein. There are 3 protein subunits associated
with each equilateral triangular face (see inset
in Fig 3), and they are placed at equivalent
sites. Such capsids have just enough internal
space to hold a genome that encodes a handful
of viral proteins.

Longer, more complex genomes of other
viruses need larger capsids to accommodate
them. Those are constructed from more than
60 subunits of one or more types of proteins. In
the Caspar–Klug construction, the capsids are
derived from a sheet of hexamers by replacing
12 hexamers by pentamers at appropriate
positions in the hexagonal net (49); see Figure
3 (50). One starts by inserting the first pentamer
at the origin. The next pentamer position,
which defines the length of the icosahedron
edge, is given by summing a pair of integer
multiples of the lattice unit vectors (h, k). The

third pentameric vertex of the triangular face of
the icosahedron is then located through a 608

rotation of the second vertex about the origin.
This completes one triangular face. Applying
icosahedral symmetry operations to it gener-
ates the rest of the icosahedral cage. Subunit
arrangements are now only quasisymmetric.
However, note that the approach satisfies the
physical premise that intersubunit interactions
should be nearly preserved across the entire
net (Fig 3). The number of proteins in the shell
is T 3 60, where the integer T is called the
triangulation number and obeys the selection
rule, T ¼ h2 þ hk þ k2. Thus, there are 12
pentamers and 10(T� 1) hexamers in a Caspar–
Klug capsid.

The Caspar–Klug construction has been very
successful in describing the structures of a large
set of viruses. It represents an excellent
educational opportunity to show basic geo-
metric and physical principles at work in
shaping biologic matter. Thus, in the first part
of the project, students will learn to construct

Fig 2. (A) Polyhedral cages formed of pentamers and hexamers constructed from 3-mm NdFeB magnetic beads. (B) Experimental setup for
the measurement of force–indentation curves. LD ¼ laser diode, M ¼ mirrors, BS ¼ beam splitter made of microscope glass slide, A ¼
actuator, V ¼ virus cage model, S ¼ screen for display and readout of laser beam deflection, and C ¼ cantilever assembly composed of
copper spring blade, mirror, and brass hemisphere as a probe.
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Caspar–Klug cages according their T numbers
by using magnetic beads.

C. Mechanics of polyhedral cage
deformation

In the second part of the project, students
will familiarize themselves with the principles of
AFM and virus cage nanoindentation. The
magnitude of the Young modulus for the virus
coat can be estimated from the spring constant
within the framework of the thin elastic shell
model (51). Small icosahedral virus Young
moduli are comparable in magnitude to those
of soft plastics such as Teflon. Such knowledge
of the elastic properties of viruses could shed
light on the effects of interfacial interactions
that viruses experience throughout their life
cycle.

AFM imaging is now firmly established as a
biophysical tool (52), and there are numerous
references that will provide a good introduc-
tion to it; see, for example (53). Figure 4
provides a cartoon outlining the main principle
features of topographic AFM imaging. Our
focus here is to introduce AFM as a nano-
indentation tool, which can inform the elastic
properties of viruses within the framework of
the continuum elastic theory of shells and
beyond.

A diagram of the AFM indentation experi-
ment is presented in Figure 5. In a typical AFM

nanoindentation experiment, a spread of virus
particles adsorbed on a solid support is first
imaged. Then, the AFM probe is placed on top
of a virus particle, and the probe is pressed
against the virus particle through a series of
small, calibrated steps in a direction normal to
the substrate surface. At each step, the
extension of the pushing actuator, Dz, and
the deflection of the laser probe, Dy, resulting
from it, are recorded. Then, we have (Fig 5)

Dz ¼ Dx þ Du ð1Þ
where x is the indentation of the sample and u
is the linear vertical displacement of the tip,
relative to the straight cantilever position
purely due to cantilever bending, as it presses
on the sample. Assuming the cantilever and the
virus act as 2 springs in series compressed by
an external force, at each actuator step Dz, the
changes Du and Dx are related through the
elastic constants of the virus (kv) and the
cantilever (kc):

kv � Dx ¼ kc � Du ð2Þ
Cantilever deflection is measured by record-

ing the shift, y, in the laser spot location on a
distant, position-sensitive detector. The optical
lever gain, G, can be found by pushing the
probe into a surface of high stiffness. G is
simply Dy/Dz in that case. With the G factor
known, we have

Fig 3. Mapping of a hexagonal net onto an icosahedron according the Caspar–Klug approach (29). (A) The 2 basic triangles from which T¼
3 and T¼ 7 cages are constructed. Small triangular inset: 3 protein subunits arranged inside the triangular face of a T¼ 1 icosahedron. (B)
The final result for a T¼ 4 cage (a1,2 are the unit vectors for the hexagonal lattice, and A is the vector that indicates where a pentamer
replaces a hexamer) (50).
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Dy ¼ G � Du ð3Þ
To determine the compression force from

deflection, the cantilever constant, kc, is re-
quired. It is customarily obtained by fitting the
thermal noise oscillation spectrum with a
harmonic oscillator model at thermal equilibri-
um (54, 55).

Raw experimental data is usually represented
as deflection Dy (or force), as a function of
actuator displacement Dz. Assuming the virus
behaves as a Hookean material, from the
measurement of Dy and Dz and using Eqs. 1–
3, one can obtain an effective elastic constant
for the virus particle, kv.

In practice, the simplest way to extract the
Young modulus, E, for the capsid material from
kv is to approximate the capsid with a thin
spheric shell (51). However, this approach is
expected to overestimate E because it does
not account for the site-dependent deforma-
tion of capsid protein subunits themselves,
which will generally produce a state of
prestress within the icosahedral shell (50, 56,
57). Nevertheless, kv is considered an ade-
quate practical descriptor of the mechanical
state of a virus and was shown to reflect

changes occurring as result of virus life stages
or environmental cues (58–60).

III. MATERIALS AND METHODS
A. Construction of Caspar–Klug
polyhedral cages from discrete
subunits

For a practical introduction to the Caspar–
Klug construction, cages made of 3-mm
magnetic beads as subunits make a useful
representation. We start the shell assembly
from a set that includes 2 oligomeric subas-
semblies: ringlike pentamers and hexamers,
which we call capsomers (Fig 2A). Assuming
the ringlike capsomers are in their minimum
energy state, to attract, 2 capsomers should
have the magnetic dipoles running in the
same direction around the ring (i.e., both
clockwise or both anticlockwise). Thus, if 2
capsomers repel, to make them stick, 1 must
be flipped. Starting from a pentamer, we build
concentric rings of capsomers around it
according the Caspar–Klug scheme (see Sup-
plemental Video S1 in the Supplemental
Material for a T ¼ 3 example).

Fig 4. Schematic of AFM imaging of virus particles. The force (and
thus the distance) between the AFM probe and the sample is kept
constant, while raster scanning the sample at a distance of ~ 1 nm
via a feedback loop driving a fast piezo actuator (z piezo stack).
Positional adjustments of the vertical piezo are then displayed as a
topographic map (z versus x and y).

Fig 5. Diagram of the AFM indentation experiment. L¼ laser, A¼
piezo-actuator, C ¼ cantilever with hemispheric probe and mirror.
Distances: z ¼ actuator displacement, x ¼ shell indentation, u ¼
linear cantilever deflection, y ¼ optical lever deflection.
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B. Optomechanical setup
The entire optomechanical setup is shown in

Figure 2B. The most expensive part is the laser
pointer. The cantilever can be inexpensively
machined out of a strip of metal sheet, and
inexpensive mirrors and kinematic mounts will
give satisfactory results. In our setup, we used a
150 3 30 3 1-mm strip of copper or brass for the
cantilever shaft. It can be shown that, for best
signal to noise, the AFM cantilever elastic
constant has to be similar with that of the cage.
However, as that has to do with the amplitude
of thermal fluctuations, it is not directly relevant
to the scaled-up mechanical system here.

The cantilever was clamped in a mount over
40 mm of its length. For the probe, we have
used an 8-mm-radius hemisphere, which mim-
icked the AFM tip. On the other side of the
probe, on the cantilever shaft, we glued a 12-
mm mirror. The laser beam was aligned at
normal incidence onto this mirror. When the
probe met a surface, the beam would start to
deflect. The actuator used for probe displace-
ment was a differential micrometer screw with
a Vernier scale, with a precision of 0.05 mm. The
laser spot position as a function of actuator
displacement was read onto a millimeter graph
paper screen. The optical lever length mea-
sured from the cantilever mirror to the screen
was about 600 mm.

We have not calibrated the cantilever, as the
experiments we have carried out solely in-
volved comparisons of cage orientations, with
respect to the compression direction and
between spheric thin shells and icosahedral
shells. If required, to calibrate the cantilever one
can measure the mass of small metal weights
by using an electronic scale and the respective
deflection, resulting from placing each weight
onto the cantilever.

C. Sample preparation for AFM
indentation of brome mosaic virus
particles

In the next section, we present a comparison
of the force–displacement curves acquired from
a T ¼ 3 magnetic bead cage and from brome
mosaic virus (BMV) particles adsorbed on a

highly oriented pyrolytic graphite surface in
aqueous solution. The BMV has a T ¼ 3 capsid,
composed of 180 identical coat proteins, and is
a very well-studied model for small, nonenvel-
oped, single-stranded RNA viruses (61). Sample
preparation and AFM indentation protocols for
BMV have been described elsewhere (46), and
there is a detailed description of the generic
features of the experiment in (62).

IV. RESULTS AND DISCUSSION
A. Prestress

When the model is assembled under its
constitutive magnetic interactions, it looks fairly
spheric. When we add to the spheric shape, the
observation that 2 spheric beads make contact
at a point and, therefore, the contact area
between subunits is very small, it is tempting to
expect that the mechanical behavior of the
cage under compression should be similar to
that of a thin elastic spheric shell. In these
conditions, it should be irrelevant whether we
push along a 3-fold versus a 5-fold symmetry
axis (Fig 6). The mechanical response as
embodied in the deflection versus displace-
ment curve and within the thin spheric shell
approximation should be the same. Experi-
ments done on a T ¼ 3 cage on 2 orientations
(compression along a 5-fold and along a 3-fold)
are presented in Figure 7, as deflection (same
as force) versus actuator displacement, togeth-
er with deflection–displacement data taken on
the substrate (no cage). Compression forces in
this case were low enough to observe partial
reversibility.

The elastic constant of the cages was
evaluated from the initial slope of the deflec-
tion–displacement curve. Clearly, compressing
along the 5-fold axis yields a significantly stiffer
response from the particle than if we compress
along the 3-fold axis, because the magnetic
cage is prestressed with the pentameric defects
being under high stress in this case. For in-
depth discussions of this many-body effect see
(36, 50, 63).

The difference in stiffness between a 5- and a
3-fold axis depends on the radius and the ratio
between the bending modulus and the stretch-
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ing modulus of the shell material (64). Thus,
orientation effects originating in prestress are
expected and have been observed experimen-
tally on viruses (65). One of the practical
implications of the effect could be a preferen-
tial orientation upon contact with the cell
surface. For instance, it was found that BMV
orients preferentially with a 3-fold axis down on
a rigid surface, whether it is a hydrophobic or
hydrophilic surface (66).

B. Compression beyond the linear
regime

In the previous section, we have limited our
analysis to small indentations and quasielastic
response. It is interesting to compare the
behavior of the macroscopic model with that

of a virus over a broader range of strain. Figure
8 shows a comparison of force–compression
curves obtained from the magnetic model and
by AFM from BMV for 2 orientations.

There is surprising qualitative similarity be-
tween the force–compression curves of the
magnetic model and the virus: we observe a
similar sequence of buckling events (drops in
force and deflection as the strain increases). We
also observe that there is partial recovery in
both the virus and the magnetic cage when
compressing on the 3-fold axis, but very little, if
any, occurs when compressing on the 2-fold
axis. On the model, it is easy to observe the
structural changes that accompany buckling.
They are, in general, involving patches (spheric

Fig 6. Three orientations of the T ¼ 3 cage. From left to right: 2-, 3-, and 5-fold symmetry axes, normal to the viewer.

Fig 7. Indentation of the magnetic cage model with a small force, at 2 different cage orientations: 5-fold (left) and 3-fold (right). The black
curve is obtained by compressing the substrate directly. The green line is a linear fit to the compression curve for the 5-fold orientation, and
the dashed green line is a linear fit for the 3-fold orientation. The slope of the linear fit gives the sample stiffness. The 5-fold orientation
corresponds to a steeper slope, and, thus, the highest stiffness.
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sectors) moving as a whole, which are isometric
with respect to the contact area of the probe.

The similarities between the stress–strain
relationship in magnetic bead cages and virus
shells suggest that common mechanical prin-
ciples are involved in large-scale deformations.
However, when discussing these similarities,
students should be made aware of the
important differences that separate the macro-
scopic model from the microscopic virus
system. In the latter, entropy, reversibility, and
contributions of the nucleic acid to the free
energy of deformation (see, e.g., 67, 68) play
major roles that are not recapitulated by the
model.

We gave 2 examples of types of projects and
discussions that can be carried out. Many other
interesting experiments could be envisioned.
For instance, in terms of structure and symme-
try, students could be provided an assembled
magnetic capsule and be asked to determine
what T number it is and how many different
subunit–subunit interfaces they could identify.
In terms of mechanics, they could be asked to
investigate the role of shear. In the magnetic
bead capsule, the beads can move past each
other during deformation, but how would the
force–compression curve be different if we did

not allow for it to occur, for example, if we
replaced the cage by a 3D-printed polymer
replica? We could also ask: What if there are
vacancy defects, such as those observed in
immature human immunodeficiency virus
shells? How would the stiffness and overall
force–compression curve change? Also, finite
size effects, which have no counterpart in bulk
materials, are expected to play a role in the
mechanical response; these could be easily
explored as well. In this regard, a recent article
found that even at small stresses, well below
the yielding point and generally thought to
induce a Hookean response, strain continues to
develop in time via sparse, randomly distribut-
ed, relatively rapid plastic events (69). Such
events are believed to be initiated as disloca-
tions between a pentameric and a hexameric
unit and propagate as cracks as the mechanical
loading increases. Could these be recapitulated
by the magnetic capsule model? Would such
intermittency of deformation be present in
capsules in which all sites are strictly identical
from the point of view of binding strength and
geometry (for example, in magnetic bead
cylinders)? These are only a few suggestions
of further questions and explorations; the
model is suitable for an even broader scope

Fig 8. (A) Indentation of the magnetic cage model to about 30% of its initial height, along a 2-fold axis. (B) Indentation of BMV along a 2-
fold axis. (C) Indentation of the magnetic model along a 3-fold axis. (D) Indentation of the virus along a 3-fold axis.
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of discussion. An example in this sense is the
virology blog kept by Racaniello (70).

V. CONCLUSION
In conclusion, we have presented a magnetic

bead cage demonstration to illustrate experi-
mentally how to construct icosahedral virus
cage models and how to probe virus biome-
chanics. Using a simple instrument, which can
be constructed by high school and undergrad-
uate students, we have quantified the Hookean
response of viromimetic magnetic bead cages
at low mechanical stress and observed orien-
tation-dependent buckling transitions at high
mechanical stress. We have also observed the
occurrence of prestress, which, similar to virus
cages, can be related to inherent geometric
frustration.

SUPPLEMENTAL MATERIAL
A video of the step-by-step magnetic bead T ¼ 3 cage

construction described in Materials and Methods is available at:
https://doi.org/10.35459/tbp.2019.000106.S1.
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