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ABSTRACT Transient barriers are fundamental to cell supramolecular
organization and assembly. Discontinuities between spaces can be generated by a
physical barrier but also by thermodynamic barriers achieved by phase separation of
molecules. However, because of the transient nature and the lack of a visible barrier,
the existence of phase separation is difficult to demonstrate experimentally. We
describe an approach based on the 2-dimensional pair correlation function (2D-pCF)
analysis of the spatial connectivity in a cell. The educational aim of the article is to
present both a model suitable for explaining diffusion barrier measurements to a
broad range of courses and examples of biological situations. If there are no barriers
to diffusion, particles could diffuse equally in all directions. In this situation the pair
correlation function introduced in this article is independent of the direction and is
uniform in all directions. However, in the presence of obstacles, the shape of the 2D-
pCF is distorted to reflect how the obstacle position and orientation change the flow
of molecules. In the example shown in this article, measurements of diffusion of
enhanced green fluorescent protein moving in live cells show the lack of
connectivity at the nucleolus surface for shorter distances. We also observe a
gradual increase in the connectivity for longer distances or times, presumably
because of molecular trajectories around the nucleolus.

KEY WORDS fluorescence correlation; spectroscopy; fluoroscene workshop;
membraneless organelles; connectivity maps

I. INTRODUCTION
This article is intended as a guide for teachers in a course describing

the motion of molecules in cells in the presence of obstacles small and
large found in the cell. We believe that the subject is important for
modelers and to biologists in general. How molecules diffuse in
biological systems is necessary for the introduction of the concept of
compartments in cells and in tissues. In compartments, biochemical
reactions can be accelerated in one compartment and kept separated
from other compartments. The corresponding author (EG) has used
part of the material of this article in the course BME 138
(Biospectroscopy for Undergraduates) and for the graduate course
BME 238 (Biospectroscopy for Graduates). First, we describe the nature
of the physical phenomena we intend to address; then we propose
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graphical methods that should be understand-
able by the general reader. The graphical
methods described in this article are the results
of classroom experience by one of the authors
(EG) who regularly teaches the subject to a
relatively large class of senior undergraduate,
master’s, and graduate students. The style of
teaching was changed to graphical illustrations
after negative experience using a mathemati-
cally rigorous approach.

II. MOVEMENT OF MOLECULES
IN THE PRESENCE OF
OBSTACLES

In cells, a universal mechanism of transport
of molecules to their target location is thermal
diffusion. However, in the cell interior, mole-
cules find barriers to diffusion, as well as
obstacles they have to go around (1, 2).
Diffusion in the presence of obstacles of
arbitrary shape and size cannot be described
by simple mathematics. The cell interior has
large membrane structures such as the nuclear
envelope, the Golgi apparatus, and the endo-
plasmic reticulum, which are different in shape,
size, and location in every cell (3, 4). The
nucleus contains organelles like the nucleoli
and Cajal bodies devoid of a membrane. It is
believed that these organelles are segregated
by a liquid–liquid phase separation (4–6). In
principle, if we could track each molecule, or at
least molecules of a given kind, we could
produce a map of barriers by observing where
the molecules cannot go (7). However, mole-
cules and barriers move much too quickly to
track them individually. There are also too
many molecules of a given kind in the cell to
track individually. Molecules diffuse in a cell
with a diffusion constant of about 20 lm2/s,
and they can diffuse through pores at the
nuclear membrane or to the exterior of the
cytosol. The diffusion in the cell interior is a 3-
dimensional (3D) process, and current methods
for single-particle tracking can only explore
relatively small volumes in 3D. Averaging
methods, such as photobleaching recovery,
cannot provide information about the motion
of single molecules. New techniques capable of

resolving the path followed by single molecules
are needed, with enough temporal and spatial
resolution to follow fast-diffusing molecules,
possibly in a volume as large as the entire
nucleus or the entire cell (8–10). The pair
correlation algorithm described in this work
calculates the time it takes for molecules to go
between a pair of points in the cell, hence the
name ‘‘pair correlation function’’ (10, 11). To
explain our method, we use a graphical
representation of the diffusional process start-
ing at an arbitrary point in the cell and
measuring the time needed to travel a given
distance from that point. The expectation is
that if the space is homogeneous, the time to
reach a given distance is independent of the
specific direction. However, if during the
diffusion process a molecule encounters an
impenetrable barrier, like the membrane in a
cell, that molecule will never reach a point on
the other side of the barrier. That is, the pair
correlation function calculated for 2 points on
opposite sides of an impenetrable barrier will
be zero. If instead of an impenetrable barrier
there is an obstacle that the molecule must go
around, it will take a longer time to get to the
point after the obstacle than if the obstacle is
absent. These are the elementary concepts that
form the basis of the visualization of barriers to
diffusion in a cell. A tangible analogy of a
barrier to diffusion could be a river or a fence. If
a person or animal is on one side of a fence,
they will not be found on the other side at any
later time, because they cannot cross. Another
simple analogy could be that between 2 points
there is an obstacle like a mountain. In this
case, there is a probability to find the person or
animal on the other side of the mountain, but it
will take longer to get there compared with
traveling the same distance in the absence of
the obstacle. We can extend the concept by
considering how barriers might affect the
probability of finding a person or animal that
was at one point at a given time to be at a
different point at a later time. These concepts
should be intuitive to every student.

In fluctuation spectroscopy using a confocal
microscope (or a camera), the volume of
excitation is diffraction-limited, being about
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0.2 femtoliters. This volume contains (depend-
ing on the concentration of the fluorescent
proteins) about 1–100 molecules. The average
fluorescence (due mainly to nonmoving mole-
cules) is subtracted from the fluorescence (the
average value) in the correlation function,
leaving only the correlations due to the moving
fluorescent particles. The fluorescence signals
appear as single events because of single
moving particles. The field of fluorescence
correlation spectroscopy (FCS) in a single point
was originally developed in 1973 by Magde et
al. (12). Today, most of the experiments are
done with images, but the pixel size is
diffraction-limited and the number of moving
molecules in a pixel is low. This is a well-
understood principle in FCS and among the
community working on single-molecule fluctu-
ations. What is new here is the cross-correlation
between the fluctuations at a pair of distant
points originating from the same molecule as it
diffuses in a cell. In the following part of this
article we describe the consequences of these
basic principles, and we focus on the visualiza-
tion of obstacles to diffusion in cells, but the
concepts apply to the macroscopic world as
well. In the macroscopic world you could take a
picture, but in the cells you could take a picture
only if you are able to label the barrier;
otherwise, one can infer the existence of an
invisible barrier because molecules cannot pass
through. However, to describe the physical
process we are trying to model, we are adding
the mathematical expressions of the 2-dimen-
sional pair correlation function (2D-pCF), which
is the cross-correlation of fluorescence fluctua-
tions at 2 distant points in a cell or tissue (10).
The pair correlation function is defined in Eq. 1.

pCF s; drð Þ ¼ , F t; 0ð ÞF t þ s; drð Þ
F t; 0ð Þh i F t; drð Þh i ð1Þ

The pCF is indexed by 2 variables, dr and s.
The time s is the usual variable indicating the
time delay between the records of fluorescence
intensity fluctuations at 2 different points
separated by a distance dr. In this article we
will use units of pixels to indicate the distance.
Of course, we need to specify the size of a pixel.
The pCF is defined next, for which the angle

brackets (h i) indicate the sum over all possible
times in the record, and F indicates the
fluorescence intensity at time s and position
dr after the average is subtracted. For an
introduction to fluorescence, consult the book
Introduction to Fluorescence by D.M. Jameson
(13).

III. A GRAPHICAL
REPRESENTATION OF THE
PRINCIPLE OF PAIR
CORRELATION FUNCTIONS

In this article we make an effort to describe
the process of detecting barriers to diffusion
without using the mathematical formula (Eq. 1)
given in section II in hopes of explaining the
visualization of barrier to diffusion to the
nonexpert in spatial correlation methods. The
pair correlation formula (2D-pCF) calculates the
cross-correlation between fluorescence fluctu-
ations at different points in a cell (10, 11).
Fluorescence is used as a means to observe the
fluctuations due to moving molecules. The
basic idea is that fluctuations in fluorescence
intensity are caused by the movement of single
molecules through a pixel or volume of
excitation. By correlating the fluctuations at a
given distance between pairs of points, we can
obtain the probability for a molecule (the same
molecule) to go from one point to another and
the time it takes for this displacement to occur.
If this concept becomes difficult for the
audience, the example of people or animals
moving in the presence of obstacles could work
as well.

A typical pCF is shown in Figure 1A. This
function increases first to reach a maximum
and then decreases later to zero, which simply
means there is a maximum probability to find
the molecule, person, or animal at a given
distance and a given time. In the case of
random motion, the probability is minimal at
short times (because it has not reached a given
distance) and tends to zero at very long times
because the object has gone too far. In the 2D-
pCF approach we calculate the pCF starting at
one pixel (r0), for all pixels in the image at a
given distance R from the original pixel in the
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plane of the image, which means we are
looking around in all directions. We calculate
the pCF (the probability to find the object in a
given direction) at 32 angles equally spaced
around a circle (Fig 1B,C). The 2D-pCF(s, R) is
given by the set of pCFs (32 angles in the
example in Fig 1) calculated for pixels at a given
distance R. The pCFs are also logarithmically
averaged with 32 equally log-spaced time
intervals. For each pixel of the image, we
obtain a subimage (32 3 32 pixels) organized
by the angle and the delay time index (Fig
1D,E). This subimage is then represented in
polar coordinates so that the angle of the polar
plot corresponds to the angle of the original
pCF in the image grid, as shown in Figure 1D.
We call this polar plot a SPRITE, which is the 2D-
pCF(s, R) at each point of the image as a
function of the angle and plotted on a log time

axis, where R is an integer describing the
distance in units of pixels between any 2 points
in the image. This representation may not be
obvious to people not familiar with coordinate
systems. In this case, the teacher could ask for
students to participate in a real experiment:
start to walk in all directions and measure the
time it takes to arrive to a given distance or
how far the person has traveled for a given
amount of time. Although the SPRITE looks like
an image (32 3 32 points), the dimensions of
the axes of the SPRITE are in log time units. In
Figure 1D,E we show 2 representative SPRITEs
away from and close to an impenetrable barrier
to diffusion indicated by the red line.

Because each SPRITE is like a small image, we
use moment analysis (pattern recognition) to
characterize some elements of the angular
distribution in the SPRITE. Finally, we define

Fig 1. (A) A typical pair correlation function. Note that this correlation function could have a maximum. (B) The algorithm calculates the
correlation (Eq. 1) at a number of angles shown by the arrow with respect to one point in the cell marked in red. (C) At different angles, the
correlation function could be different if the diffusion is not isotropic. (D) The set of correlation functions in panel C is plotted in polar
coordinates in a figure called the SPRITE for a given point. (E) If there is an obstacle at a given distance, the shape of the SPRITE will be
deformed. Note that the deformation of the SPRITE follows the direction of the obstacle. The closer the point is to the obstacle, the larger
will be the deformation of the SPRITE.
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the anisotropy of the pCF polar distribution in
the SPRITE (at each point of the image) as the
ratio of the long axis to the small axis of the
ellipsis representing the SPRITE (see ref 10 for
mathematical definition of anisotropy). The
values of the anisotropy at each point of the
original image are used to produce the diffusion
anisotropy map, which is the map of the amount
of deformation of the pCF(R) at each pixel due
to the presence of barriers to diffusion. The
concept of a SPRITE should be acquired by the
students to be able to continue with the
concepts developed in this article. Several
examples of SPRITEs can be experimentally built
by the students until they grasp the concept.

IV. BARRIER TO DIFFUSION
REVEALED BY THE SHAPE OF
THE SPRITE

To explain the origin of the deformation of
the pCF function caused by a barrier to
diffusion, in this article we show with simula-
tions the effect of a barrier on the SPRITE shape.
Simulations are performed by the Simulation
tab in the program SimFCS2 (freely available) or
SimFCS4 (Globals Software, G-SOFT Inc., Cham-
paign, IL) and explained in the tutorials that can
be found under the Software tab on the
Laboratory for Fluorescence Dynamics website
(14). To show examples of 2D-pCF(s, R), we
performed simulations of particles randomly
diffusing in a 2D box of 80 3 80 pixels. A
camera is observing only a part of the box (64 3

64 pixels) to avoid border effects. We placed in
the plane of the image a box that represents a

barrier to diffusion, as shown in Figure 2A (the
box in red). When a molecule is approaching
the borders of the box, if the barrier is at a
distance less than or equal to the distance used
to calculate the pCF(R), the amplitude of pCF
decreases in the direction of the barrier
because the same molecule cannot be ob-
served on the other side of the barrier, as
explained in section I. At a relatively large
distance from the barrier (on either side of the
barrier), the diffusion is isotropic, as determined
by the round profile of the SPRITE, and the
anisotropy is small. As the SPRITE moves closer
to the barrier, though, the round profile
becomes deformed in the direction of the
barrier; see Figure 1D,E. The same deformation
occurs if the molecules are arriving from the
other side of the barrier. The net result is that
the barrier causes an increase in anisotropy on
both sides of the barrier, as shown in Figure 2B.

The direction of the anisotropy is parallel to
the border of the obstacle (see Fig 2). On the
basis of this observation, we plot the direction
of the ellipse representing the SPRITE as a
segment of length proportional to the anisot-
ropy. The map of all the segments drawn is
called the ‘‘connectivity map,’’ which is a
convenient way to convey the information of
the anisotropy value and the anisotropy
direction in a single map (Fig 2D). To avoid
filling up the connectivity map with many small
segments, we plot a segment only if the
anisotropy value is above a given threshold.
Both sides of the barrier are clearly visible in the
connectivity map, although the barrier is not
visible in the intensity image because the

Fig 2. Simulation of fluorescent molecules diffusing in a plane in the presence of a box occupying half of the plane. The borders of the box are
impenetrable barriers to the diffusion of the molecules. The pixel size of the simulation is 50 nm. (A) The region measured by a hypothetical
camera, with the box shown in red. The yellow contour of the box is copied to panels A, B, C, and D for reference. (B) The diffusion anisotropy
map. The anisotropy is large only in the 2 regions corresponding to molecules reaching the barrier (from both sides). (C) Image of the
anisotropy angle values obtained in this simulation. Note that the color code represents anisotropy parallel to the wall; for instance, red is
horizontal and blue perpendicular. (D) The connectivity map drawn according to the rules explained in the text.
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molecule density is uniform everywhere in this
simulation. The connectivity map can be
thought of as a visualization of the molecular
flow around obstacles. We will justify the term
‘‘connectivity’’ given to this map with the
simulation of the path followed by molecules
in narrow channels and in a grid with many
channels.

V. SIMULATION OF PARTICLES
MOVING IN A PLANE INSIDE A
NARROW BOX OF 64 3 8 PIXELS

The borders of the box (the yellow dots in Fig
3A) are an impenetrable barrier for diffusion. If
we perform a simulation (with same parameters
as used for the previous simulation: 80 particles
with uniform density moving randomly with
D¼ 1 lm2/s and a frame [f] rate of 1000 f/s) but
with the presence of a box of narrow width (8
pixels), each of the borders of the box will act
as a barrier. Depending on the width of the box
(i.e., separation of the barriers), we will see 4 or
3 regions of high anisotropy. However, the
deformation is different for the 2D-pCF outside
the box (where only one side of the SPRITE is
affected) and for points inside the box where
both sides of the SPRITE are affected, produc-
ing a larger value of anisotropy inside the
narrow box (see SPRITEs in Fig 3E, where we
show the sequence of SPRITEs calculated for
R¼ 4 pixels, with the origin located at different
distances from the barrier). This increase in

anisotropy is due to the shape of the SPRITE,
which is now narrow and extending in only one
direction inside the box (Fig 3E, SPRITE at 2).
The ‘‘connectivity’’ image shows clearly the
narrow path as well as the border of the box
(Fig 3D). The anisotropy of the SPRITE increases
for molecules moving in narrow channels, as
shown in Figure 3B.

VI. SIMULATION OF A
CIRCULAR OBSTACLE

In a cell, not all barriers are straight, as
assumed for the simulations of Figures 2 and 3.
If the curvature of a barrier is small compared
with the distance used to calculate the pCF, the
flow of molecules close to the barrier will follow
a similar behavior as when in the presence of a
straight barrier. In this case, the connectivity
map is a visual representation of the molecular
flow near the barrier. Figure 4 shows the
diffusion anisotropy in the presence of a
circular box and the resulting connectivity
map. As expected from the simulation of
straight barriers, the local orientation of the
barrier to diffusion is recovered also for this
simulation. Note that molecules are present in
both sides of the circular barrier, giving the
typical anisotropy map with 2 maxima on either
side of the barrier (Fig 4B,C). The connectivity
map follows the shape of the circular barrier on
both the interior and the exterior side of the
circular obstacle (Fig 4D).

Fig 3. Simulation of fluorescent molecules diffusing in a plane in the presence of a narrow box 8 pixels wide. The borders of the box
(indicated by the yellow dots in the figure) are impenetrable barriers to the diffusion of the molecules. The pixel size of the simulation is
0.05 lm. (A) The region measured by a hypothetical camera with the box indicated in red. The yellow contour of the box is copied to all
panels for reference. (B) The anisotropy map. The anisotropy is large only in 3 regions corresponding to molecules reaching the barrier from
both sides and molecules moving inside the box. (C) The direction of the anisotropy map. Red is 08 and blue is 908, not found in this
simulation. (D) The connectivity map is drawn according to the rules explained in the text. (E) Representative SPRITEs obtained at locations
1, 2, and 3 as indicated in panel C. The SPRITE at 2 is narrow in both sides because of the proximity of the barrier for diffusion at both sides.
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VII. SIMULATION OF AN ARRAY
OF SMALL OBSTACLES

What is the minimum size of an obstacle that
can be detected? In Figure 5 we show a
simulation in which an array of square obstacles
of size 8 pixels¼ 0.4 lm are placed at a center-
to-center distance of 16 pixels ¼ 0.8 lm (the
pixel size is 0.05 lm). Simulations of diffusion in
the presence of obstacles are also available in
SimFCS2 or SimFCS4 (14). This situation could
represent relatively small obstacles in a cell. If
we calculate the pCF at a distance of 4 pixels
(200 nm), we should detect motions inside and
outside the grid. But at a distance of 7 pixels
(350 nm) or larger, the motion inside the grid
should not be visible anymore (because the
pCF distance is larger than the distance of the
barrier from each of the pixels inside the
obstacle), and only the path followed by
molecules moving between the obstacles
should remain visible. This result is shown in

Figure 5D. Only the points that are connected
outside the grid are shown in the connectivity
map. We use the term ‘‘connectivity map’’ to
indicate not only the local direction of the
obstacles but also the path that molecules
follow in a complex structure, such as the
simulated array of obstacles.

In this article, using simulations available to
students and teachers, we have shown with
graphics only that we can follow the trajecto-
ries of molecules and that a barrier to diffusion
causes a significant perturbation of the SPRITE
shape as calculated by the 2D-pCF. The overall
motion of molecules in the proximity of
obstacles can be visualized with the connectiv-
ity map. Because of the limitation of the
simulations, we were able to perform simula-
tion only in 2D and in a small field of view (3.2
lm). However, we show that in all cases
examined we can visualize the flow of mole-
cules in the proximity and around obstacles.

Fig 4. Simulation of fluorescent molecules diffusing in a plane in the presence of a circular obstacle. The borders of the circular obstacle are
impenetrable barriers to the diffusion of the molecules. The pixel size of the simulation is 50 nm. (A) The region measured by a hypothetical
camera with the box indicated in red. The yellow contour of the circular obstacle is copied to all panels for reference. (B) The diffusion
anisotropy map. The anisotropy is large only in 2 circular regions corresponding to molecules reaching the barrier from both sides and
molecules moving inside the box. (C) The direction of the anisotropy. Red is 08 and blue is 908. The direction of the anisotropy changes
gradually along the circular obstacle. (D) The connectivity map drawn according to the rules explained in the text. The connectivity map
shows the local direction at the border of the circular obstacle. Note that the circular obstacle directs the diffusion of molecules on both
sides of the obstacle.

Fig 5. Simulation of molecules moving in a grid. (A) Intensity image of 400-nm obstacles placed at a distance of 800 nm from each other.
(B) Anisotropy image calculated at a pair correlation function distance of 7 pixels [pCF(7), 350 nm]. (C) Anisotropy angle image. (D) The
connectivity map drawn according to the rules explained in the text. The connectivity map shows the local direction at the border of the
grid. Note that the connectivity map displays the grid obstacles by the movement around the obstacles.
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VIII. MEASUREMENTS OF FLOW
ANISOTROPY IN LIVE CELLS
AND IN THE CELL NUCLEUS
Single-molecule trajectories show
barriers and obstacles to diffusion
for enhanced green fluorescent
protein in NIH-3T3 cells

Next, we show single-molecule trajectories in
cells and identify the existence of barriers to
diffusion on the basis of the rules we learned
from the simulations. Although in simulations
we know what to expect, for the cell interior we
do not know where obstacles for diffusion
could be. We show the flow of the enhanced
green fluorescent protein (EGFP) inside NIH-3T3
cells. EGFP is an inert protein that can diffuse
inside cells, thus exploring the intracellular
compartment without specific interactions. By
using an NIH-3T3 stable cell line expressing
EGFP, we found that free EGFP is distributed
across the whole cell, but it is partially excluded
from the nucleolus, as shown in the fluores-
cence intensity image in Figure 6A.

The existence of numerous obstacles and
barriers for free EGFP inside the cells, in
particular in the nucleus, is shown by the 2D-
pCF(4) and connectivity maps (Fig 6B,C). In this
example, we show the edge of the nucleolus
inside the nucleus. These regions can be
identified in the fluorescence image of Figure
6A, zoomed in region of interest (ROI). In these
images we superimposed the connectivity
maps at increasing pCF distances (4 and 16

pixels) on top of the average fluorescence
intensity image. The ROI (Fig 6B,C) shows the
connectivity around the nucleolus, as well as
subnucleolus structures. There is complex
connectivity for shorter pCF distance, and the
small barriers are disappearing at larger pCF
distances (or time). The distances of 4 and 16
pixels show clear evidence for the nucleolus
barrier and interestingly subnucleus structures.

IX. DISCUSSION
A. Bleaching and motion artifacts

The basis for the determination of the
presence of barriers to diffusion is the defor-
mation of the SPRITE shape. The SPRITE
deformation is a differential effect and, in
principle, is largely independent of the molec-
ular density, as well as of the average molecular
diffusion. Because SPRITE deformation is not
dependent on local concentration, the defor-
mation measured by the anisotropy parameter
of the SPRITE is largely independent of photo-
bleaching.

B. Effect of the average diffusion
coefficient

The deformation of the SPRITE is largely
independent of the value of the average
diffusion coefficient. Additionally, the SPRITE is
plotted on a log-average scale, which makes
the shape of the distribution in the SPRITE
logarithmically dependent on the value of the
diffusion. Of course, the frame rate must be
compatible with the rate of motion of the

Fig 6. Barriers to diffusion for free enhanced green fluorescent protein (EGFP) in NIH-3T3 cells with the fast-scanner configuration and the
Airy detector on the Zeiss LSM 880. (A) Average fluorescence intensity image of NIH-3T3 stable cell line expressing free EGFP. (B) The
connectivity map for a pair correlation function at a distance of 4 pixels [pCF(4)] in the indicated ROI, represented as white segments on top
of the average intensity image. (C) The connectivity map for a pCF(16) in the indicated ROI.
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molecules. The pCF shown in Figure 1A can be
used to illustrate the effect. The maximum of
the pCF(R) moves toward shorter correlation
times for faster diffusion. However, by increas-
ing the distance R in the pCF calculation we can
move the peak of the pCF to a longer
correlation time. On the contrary, if the
diffusion is very slow, we must decrease the
camera frame rate to see the broadening of the
pCF, which is needed to detect the barrier. The
range of diffusion values we tested was from 20
to 0.01 lm2/s, which covers most of the
diffusion coefficients observed in cells. To show
that barriers are still detectable where mole-
cules are diffusing with a small diffusion
coefficient, we must compensate by propor-
tionally decreasing the frame rate. This strategy
is not always possible, so a very slow moving
particle bouncing on a barrier could elude
detection.

C. Effect of molecular density
Given a barrier, enough molecules must hit

the barrier to deform the SPRITE during the
averaging time of the pCF calculation. This
condition could require a proper combination
of fast diffusion, frame rate, and molecular
density. In a few words, we need to have
enough events to be able to see a deformation
of the SPRITE because of the proximity of a
barrier. The consequence is that, for molecules
at very low concentration and moving very
slowly, we could fail to detect a barrier. Our
simulation estimate is that we need the
product of the molecule density times the
diffusion coefficient to be about (D, lm2/s) 3

(number of molecules/lm2), or greater than 2
molecules/s.

D. Raster scan confocal vs. camera
This discussion brings up the question of

whether a fast raster scan microscope can be
used instead of a camera for collecting data for
the detection of barriers to diffusion. Figure 1
shows a simulation of molecules with a
diffusion coefficient of 10 lm2/s observed with
a camera at 1000 f/s. With the same frame rate,
decreasing the particle diffusion to 1 lm2/s still
makes the barrier visible with the camera.

Decreasing the diffusion further requires in-
creasing the molecule density to detect the
existence of the barrier or decreasing the frame
rate. The raster scan mode can be beneficial for
cases with slow diffusion, even if the collection
of many frames can be problematic. The fast
scanner module of the new Zeiss LSM 880 or
980 (Carl Zeiss GmbH, Jena, Germany) enables
collecting 4 lines at a time, increasing the speed
of the acquisition to 10 to 20 ms/f, depending
on the image size and number of pixels.

E. Biological relevance of the
connectivity information

The presence of barriers and obstacles inside
the cell are mandatory to organize and
compartmentalize information and processes
that need to be separated in time and space. A
free diffusing molecule, like EGFP, diffuses
inside the cell at 20 to 30 lm2/s. EGFP can
explore the entire nucleus within a few
seconds. Thereby, it is clear that for free
diffusing molecules, the occurrence of stable
or transitory compartments is needed to
organize in time and space the information
pipeline. Methods that enable the elucidation
of confinement regions are required; however,
it should be desirable that these methods could
be free of models and fitting that require
previous knowledge about the system. The
occurrence of transitory barriers, which indeed
are thermodynamic barriers due to liquid–
liquid phase separation, is gaining more and
more attention. However, it is not simple to
identify where and when these membraneless
organelles will show up. Thereby, this approach
will enable us to identify and study these
supramolecular organelles without previous
assumption and with great spatial and tempo-
ral resolution. In particular, fluorescence fluctu-
ation spectroscopy methods are powerful for
obtaining valuable information based on the
average behavior of single molecules. Instead,
the 2D-pCF algorithm provides the unique
opportunity to reveal the existence of obstacles
and barriers to diffusion based on the defor-
mation of the 2D-pCF without a specific model
for the diffusion (10, 11). Here, we apply the
method to study a simple biological model.
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The 2D-pCF method is one of the most
sophisticated methods in the family of image
correlation spectroscopy, yet it is the only
method so far that is capable of informing
about the presence of barriers to diffusion in
cells and tissues. The method is demanding
both conceptually and computationally. In this
method, each point of the image is calculated
compared with all the surrounding points. If a
particle moves in 3D, the correlation function
per se is not affected because the particle can
return to the plane of the calculation and then
be detected again. Other effects, such as the
formation of transient holes in structures or
membranes, are not specifically discussed in
this manuscript (12). Also, the possible effect of
erosion of the barrier when molecules interact
with the barrier is not discussed. This article is
intended to be a guide to explain the concept
of 2D-pCF to beginner scientists and to
students.

F. Simulations
Simulations were performed by the free

SimFCS2 and SimFCS4 software. Random mo-
tions of particles in 2D were used for the
calculation of the 2D-pCF. From 400 to 800
particles were randomly diffused in a box of 80
3 80 pixels at different values of the diffusion
coefficient, from 20 to 0.01 lm2/s. The pixel size
for all simulations was 50 nm. In the simulation,
a camera is observing only a part of the box (64
3 64 pixels) at 1000 f/s to avoid border effects.
In some simulations when the diffusion coeffi-
cient was below 0.1 lm2/s, the frame rate of
the camera was reduced accordingly. In the
plane of the simulation, obstacles defined by a
contour line were introduced. In every case,
when the particles reached the obstacle, they
were not allowed to cross, but all other
directions for the random motion were al-
lowed. Simulations lasted for 10 000 frames.

G. Cell culture
NIH-3T3 cells were culture at 37 8C in 5% CO2

in Dulbecco’s modified Eagle’s medium (Gibco,
Life Technologies, Thermo Fisher Scientific Inc.,
Huntington Beach, CA) supplemented with
10% fetal bovine serum, with penicillin (100

U/ml) and streptomycin (100 lg/ml). Freshly
split cells were plated onto 35-mm MatTek
glass-bottom dishes (MatTek Corporation, Ash-
land, MA) coated with fibronectin (Sigma-
Aldrich, St. Louis, MO) 24 h before the
experiments. Experiments performed with the
Zeiss LSM 880 used the NIH-3T3 stable cell line
expressing free EGFP.

X. INSTRUMENTATION
A Zeiss LSM 880 microscope equipped with

the Airyscan detector and the fast scanner
module was used for the NIH-3T3 cell experi-
ments. A 488-nm Argon laser (Melles Griot, IDEX
Health & Science, Rochester, NY) was used for
free EGFP excitation and a Zeiss Plan-Apochro-
mat 633/1.4 Oil DIC M27 objective. Using the
fast scanner module and the Airy detector, 4
lines can be acquired simultaneously, achieving
a 21 ms/frame time with a 244 3 244 pixel frame
size and a pixel size of 100 nm. The microscope
is equipped with temperature and CO2 controls
set up at 37 8C for the experiments.

XI. DATA ANALYSIS AND
PROCESSING

All data was analyzed by SimFCS software (G-
SOFT Inc.). A detailed tutorial for the 2D-pCF
processing and analysis can be found at the
LFD web page (14). A free edition of the
software called SimFCS2 is also available at our
website and SimFCS4 will become freely
available after June 2020.

XII. DATA AVAILABILITY
All data are available at the LFD web site (14).
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