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ABSTRACT Biomolecular structure drives function, and computational
capabilities have progressed such that the prediction and computational design of
biomolecular structures is increasingly feasible. Because computational biophysics
attracts students from many different backgrounds and with different levels of
resources, teaching the subject can be challenging. One strategy to teach diverse
learners is with interactive multimedia material that promotes self-paced, active
learning. We have created a hands-on education strategy with a set of 16 modules
that teach topics in biomolecular structure and design, from fundamentals of
conformational sampling and energy evaluation to applications, such as protein
docking, antibody design, and RNA structure prediction. Our modules are based on
PyRosetta, a Python library that encapsulates all computational modules and
methods in the Rosetta software package. The workshop-style modules are
implemented as Jupyter Notebooks that can be executed in the Google
Colaboratory, allowing learners access with just a Web browser. The digital format of
Jupyter Notebooks allows us to embed images, molecular visualization movies, and
interactive coding exercises. This multimodal approach may better reach students
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from different disciplines and experience levels, as well
as attract more researchers from smaller labs and
cognate backgrounds to leverage PyRosetta in science
and engineering research. All materials are freely
available at https://github.com/RosettaCommons/
PyRosetta.notebooks.

KEY WORDS protein structure and dynamics;
molecular structure and modeling; proteins and
macromolecules; computer-based teaching tools;
learning materials and teaching tools; multimedia
teaching tools; teachers and students of graduate and
upper level undergraduate courses in the biophysics-
related sciences; researchers in the biophysics-related
sciences

I. INTRODUCTION
Structural models of proteins and other

biomolecules help explain the functions and
properties. Methods for computational struc-
ture prediction (i.e., protein folding and dock-
ing, as well as interactions with nucleic acids,
carbohydrates, and other biomolecules) have
been successful in many cases and certainly
useful to drive structural and functional re-
search hypotheses (1). Design of biomolecules
(i.e., protein design, prediction of mutational
effects, and molecular complex design) has also
exhibited many successes, with potential im-
pacts in medicine, biology, biotechnology,
materials, and chemistry (2). Thus, there is a
need to disseminate these interdisciplinary
methods to a broader audience. The use of
student feedback and course evaluations in this
study was reviewed and approved by the
Homewood Institutional Review Board at Johns
Hopkins University (HIRB 11185). Here, we
present a set of workshops for teaching or
self-study of biomolecular structure prediction
and design.

II. SCIENTIFIC AND PEDAGOGIC
BACKGROUND

Computational methods are a relatively
inexpensive way to predict and manipulate
biomolecular structures, especially when exper-
imental methods prove difficult. There is a long
history in biophysics of using computational
modeling to better understand structure, dy-
namics, and function. In fact, the 2013 Nobel

Prize in Chemistry was awarded for the
pioneering contributions in quantum and
molecular mechanics of complex chemical
systems (3). There are now many available
dynamic simulation tools for observing the
behavior of biomolecules over time and pre-
dicting thermodynamic and kinetic properties
from estimates of the system’s partition func-
tion. Some of these tools include CHARMM,
Schrödinger software suite, Molecular Operat-
ing Environment (MOE), NAMD, Amber, and
Gromacs (4–9). A complementary approach to
model biomolecules is with so-called structure
prediction approaches. Instead of seeking a full
description of all the states and kinetic rates of
the system, these approaches seek the domi-
nant, low-energy conformational state that is
most relevant in biologic conditions (10). These
methods often accelerate calculations with
approximations, such as constant bond lengths
and angles, implicit solvent models, and
empirically tuned energy functions. In ex-
change for these approximations, structure
prediction approaches can capture the struc-
ture of large biomolecules in equilibrium
without necessitating simulations over long
timescales. These approaches are fundamental-
ly based on optimization of an energy function
in a very large conformational space. The same
algorithmic components can then be used in
reverse to design biomolecules by optimizing
the energy function across different biomolec-
ular sequences.

One leading structure prediction and design
software suite is Rosetta, a collection of
algorithms for protein structure prediction,
docking, and design (10–13), as well as protein
interactions with small molecules (14), nucleic
acids (15), and carbohydrates in solution or in a
lipid bilayer (16). Rosetta has been a scientific
leader in several blind structure prediction
challenges (17–21) and has shown proof of
principle for many design goals, including de
novo folds (22–24), loop design, interface
design (25–28), symmetric assembly (29, 30),
and mineral binding (31, 32). In addition to its
success in science and engineering, Rosetta is
suited for teaching structure prediction and
design for several reasons. The Rosetta meth-
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ods are available as a Python library called
PyRosetta (33), which makes them easier to
learn and combine with other scientific code
libraries. PyRosetta allows access to low-level
data and has a range of prebuilt protocols for
many tasks in biophysical research. Students
can measure and manipulate protein confor-
mations, dock proteins and small molecules,
run folding algorithms, and explore other
emerging topics in biomolecular structure
prediction and design, such as RNA modeling
and noncanonical amino acids. Furthermore,
students can learn how to use these tools by
creating and testing their own algorithms.

For about a decade now, structure prediction
and design has been taught with PyRosetta,
primarily through the use of a set of workshops
that are available both as a printed book (34)
and as downloadable Portable Document
Format files (35). These workshops have been
used to teach a course for undergraduate and
graduate students at Johns Hopkins University
for over 10 years and intermittently at other
schools, including the Massachusetts Institute
of Technology, Stanford University, The Univer-
sity of Kansas, and the University of North
Carolina. Workshops have been downloaded
over 120,000 times (several tutorials over 1,000
times per year), and a complementary set of
online lecture videos has registered over 14,000
views, reflecting a fast-growing interest in
biomolecular structure prediction and design.
In addition, these workshops have been an
important resource for the Rosetta community,
with the workshops being the primary learning
tool for many now senior core developers.

Despite the strong demand for educational
resources, there have been several challenges
in teaching with these materials. One problem
in this interdisciplinary field has been how to
train students from all levels and different skill
sets. To address this challenge, the Rosetta-
Commons has established several programs
and resources for students and researchers who
are interested in Rosetta and PyRosetta, such as
the PyRosetta and Cþþ code academies and the
Rosetta research experience for undergradu-
ates (36). Other salient resources from the
Rosetta community include Extensible Markup

Language (XML) documentation (37), the Ro-
setta user guide (38), code manual (39), and the
active, managed user forum (40). Although
these resources have helped expose the field to
a broad audience, hurdles still remain. Learning
new software can be challenging for beginners,
and the available beginner academies have
limits on the annual cohort size. In addition,
most of the resources currently available are in
the form of code documentation or static text,
which lack the interactive components that
would enable active learning. Multimodal
environments (e.g., including visualizations in
addition to text) enhance students’ mental
representations of fundamental concepts (41,
42), and in at least one coding class, interactive
Web-based content increased student time
engaging with material and improved quiz
scores (43).

In addition, there are technologic challenges
that pose problems for new learners. Because
the capabilities of Rosetta are constantly
changing and expanding, as methods are
modified and new algorithms added, educa-
tional resources need to evolve in parallel with
the main Rosetta software. Since the original
PyRosetta workshops, some commands and
protocols have been deprecated or replaced,
and many new frameworks have become
standard. Static text workshops have been
difficult to maintain because they require
manual testing and updating. A related chal-
lenge is that PyRosetta is difficult to configure
on Windows, making the barrier of entry for
some beginners and self-learners prohibitively
high.

In this work, we describe our latest contri-
bution to address the pedagogic and techno-
logic limitations of previous educational
resources by creating an accessible, multime-
dia platform for teaching biomolecular struc-
ture prediction and design methods with
PyRosetta. Our solution combines the accessi-
bility of Jupyter Notebooks, a shareable Web
application that supports live code, equations,
visualization, and text (44), with the free
computing power of Google Colaboratory
(45) to develop a way for students of all
experience levels to use PyRosetta on the
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cloud. Starting with our existing static work-
shops, we created a new, expanded set of
interactive, multimedia Jupyter Notebooks
with coding examples and conceptual ques-
tions that engage students with the material
and let them test their understanding. We
discuss in the following how this approach
may improve engagement and retention and
how the technical implementation removes
barriers to entry and enables the materials to
stay current with emerging Rosetta methods.

III. RESULTS
A. PyRosetta workshops cover a
broad range of basic and advanced
topics

To make a broad range of topics in the field
accessible to the public, we have created a

diverse set of PyRosetta workshops within
Jupyter Notebooks (i.e., PyRosetta notebooks)
and shared them in a public, open-source
GitHub repository (https://github.com/Rosetta
Commons/PyRosetta.notebooks). These note-
books aim to teach both the fundamentals, as
well as the applications of biomolecular
structure prediction and design. The set of
notebooks currently includes 16 modules and
is split into two parts. Part I introduces the
basics of PyRosetta (Chapters 2 to 9), and Part
II explores advanced applications (Chapters 10
to 16), such as antibody design and mem-
brane protein modeling (Fig 1). Chapter 1
walks students through the process of setting
up PyRosetta in Google Colaboratory with
step-by-step instructions and guiding screen-
shots.

Part I focuses on the two main scientific
capabilities of Rosetta: sampling and scoring
biomolecular conformations. The notebooks
explain the technical basics of PyRosetta,
starting with how to create a Pose object,
which is the container that holds all atoms,
molecules, coordinates, energies, and other
details about the system. Next, students learn
how to make a ScoreFunction object to
approximate free energies and how to com-
bine Mover objects to manipulate the Pose
conformations. In addition to these technical
skills, Part I builds the fundamental theoretic
concepts that frame the challenges of sam-
pling and scoring conformations. Students are
introduced to the Levinthal paradox, the idea
that the conformational space available to
proteins is exponentially large and thus
impossible to search comprehensively (46).
They also learn about Anfinsen dogma, the
idea that a folded protein is at a thermody-
namic minimum free energy state (47). The
workshops teach students how to use various
potential functions, which can be physics
based (van der Waals, Coulomb) or knowledge
based (hydrogen bonding, side-chain ener-
gies). Students learn that these functions can
be empirically optimized for protein-scale
phenomena, such as folding and design. Most
exercises in Part I are short and provide
detailed guidance. Moving GIF animations,

Fig 1. Map of general topics covered in the PyRosetta notebooks (as
of October 2020).
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schematics, and images of biomolecules (cre-
ated in PyMOL software) are used to illustrate
general concepts (48). For example, students
are guided through the application of a
TrialMover, which tests a conformational
change, evaluates the new energy, and uses
the Metropolis Monte Carlo criterion to either
accept or reject the change (49). In addition to
general concepts, some visualizations also
depict expected outcomes, such as a PyMOL
movie of a basic folding algorithm. The
learning objectives for the workshops in Part
I can be found in Table 1.

Part II guides learners through advanced
applications of PyRosetta, relying on the basic
skills and concepts introduced in Part I. Chapter
12, for example, explores how PyRosetta can
also be used to model and design antibodies,
which is an important challenge faced by
pharmaceutic companies (50). In Chapter 14,
students learn how to apply the same ap-
proaches to predict RNA structures, which are
increasingly recognized for critical roles in
catalysis and regulation (51). Chapter 15
explores the tools for investigating membrane
proteins, which include approximately 60% of
drug targets (52). A larger emphasis is placed
on workshop exercises to introduce learners to
a variety of questions and methods that are
currently used in the field. For advanced
students, Chapter 16 reviews more intensive
tasks that can be executed outside of Google
Colaboratory, such as parallelization with GNU
(www.gnu.org) and dask libraries (53). The
learning objectives for the workshops in Part II
can be found in Table 2.

B. Students can access the
multimedia PyRosetta workshops
on the Google Colaboratory
platform

Google Colaboratory is an online Web envi-
ronment for Jupyter Notebooks on a cloud-
based virtual machine, accessible with any
browser. Google Colaboratory provides students
with powerful computational resources, includ-
ing 13 GB of random-access memory, 33 GB of
disk space, 2.30 GHz of a central processing unit,
and continuous sessions of up to 12 h (45).

Although Jupyter Notebooks have been used for
engineering education (54, 55), Google Colabor-
atory offers a few advantages for studying
biomolecular modeling, starting with the free
in the cloud computing power. Students can
complete most of the PyRosetta notebooks in
the Google Colaboratory environment (Fig 2).
They can open notebook files and store different
versions directly in Google Drive. The initial
configuration of the PyRosetta software package
in Google Colaboratory is automated and takes
approximately 10 min. Afterwards, students
simply import the supporting pip package
pyrosettacolabsetup (56) and the config-
ured PyRosetta package. Students can complete
the provided exercises to build their own
solutions and modify any line of code in the
workshops, which pair introductory passages,
concepts, and exercises with supporting PyMOL
images, movies, and diagrams (Fig 3).

C. Jupyter Notebooks enable
features for students and
instructors

To create both student and instructor versions
of assignments in the notebooks, we incorpo-
rated nbgrader (57). The nbgrader module
enables developers and instructors to create and
maintain a single master copy of each workshop.
The master copy includes solutions to all
exercises, and the student version of the
workshop is automatically generated without
selected solutions (Fig 4). Thus, developers can
write PyRosetta coding examples and problems
for students to attempt on their own. To help
students locate examples of specific concepts
and commands, we also incorporated nbpages
(58), which enables the automatic generation of
the table of contents and a searchable keyword
index in notebook and markdown form (Fig 5).
These tools are activated by the provided
make-student-nb.bash script, which devel-
opers can use to update the student notebooks,
table of contents, and keywords index with a
single command.

Instructors can make changes to the original
set of Jupyter Notebook workshops by forking
the main public repository (59). This allows
instructors to tailor the workshops for specific
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Table 1. List of workshop topics and learning objectives in Part I.

Current topics Students will be able to

1.00 How to Get Started
1.01 PyRosetta Google Drive Setup
1.02 PyRosetta Google Drive Usage Example
1.03 How to Install Local PyRosetta

� Set up PyRosetta in Google Colaboratory
� Set up PyRosetta on a local computer (optional)

2.00 Intro to PyRosetta
2.01 Pose Basics
2.02 Working with Pose Residues
2.03 Accessing PyRosetta Documentation
2.04 Getting Spatial Features from Pose
2.05 Protein Geometry
2.06 Visualization and PyMOL Mover
2.07 RosettaScripts in PyRosetta
2.08 Visualization and pyrosetta.distributed.viewer

� Load a PDB structure
� Measure and alter protein structure (in internal or Cartesian coordinates)
� Visualize macromolecules and PyRosetta ResidueSelectors within Jupyter

Notebooks and through the PyMol–PyRosetta interface
� Run a RosettaScript from Python
� Instantiate and use individual configured components (objects) from a

RosettaScript

3.00 Rosetta Energy Score Functions
3.01 Score Function Basics
3.02 Analyzing Energy between Residues
3.03 Energies and the PyMOL Mover

� Test different score function components or weighted combinations

4.00 Intro to Folding
4.01 Basic Folding Algorithm
4.02 Low-Res Folding and Fragments

� Explain the fundamental challenges of protein structure prediction
� Describe the use of protein fragments for building protein backbones
� Implement a Metropolis Monte Carlo search strategy
� Use standard PyRosetta protocols to optimize protein structure

5.00 Structure Refinement
5.01 High-Res Movers
5.02 Refinement Protocol

� Implement a Monte Carlo plus minimization algorithm
� Use various standard PyRosetta movers to manipulate a protein structure

6.00 Intro to Packing and Design
6.01 Side-Chain Conformations and Dunbrack Energies
6.02 Packing Design Regional Relax
6.03 Design with a Resfile and Relax
6.04 Protein Design 2
6.05 HBnet before Design
6.06 Intro to Parametric Backbone Design
6.07 Intro to de novo Protein Design
6.08 Point Mutation Scan

� Optimize side-chain conformations for a set of specified residues by
using PyRosetta

� Write custom PyRosetta protocols to simultaneously optimize a protein
structure and sequence

� Integrate side-chain packing with small and shear moves and
minimization in PyRosetta refinement protocols

� Precede side-chain packing with hydrogen bond network design
� Design proteins by using custom score functions with nonpairwise

decomposable score terms in PyRosetta
� Design symmetric proteins by using parametric backbone design
� Design families of proteins with regular arrangements of secondary

structure elements
� Generate mutagenesis library for antigen–antibody binding with

PyRosetta
� Compare mutant and wild-type binding energy
� Visualize mutagenesis results by using a Python heatmap

7.00 Protein Docking
7.01 Fast Fourier Transform Docking
7.02 Docking Moves in Rosetta

� Describe the major approaches to docking (grid based, FFT, Monte Carlo)
and the advantages and disadvantages

� Use the PyJobDistributor for job distribution
8.00 Ligand Docking PyRosetta

8.01 Ligand Docking XMLObjects
8.02 Ligand Docking pyrosetta.distributed

� Perform high-resolution protein–ligand refinement by using the
DockMCMProtocol mover

� Perform global ligand docking by using XMLObjects
� Perform ligand docking with a genetic algorithm by using

pyrosetta.distributed
9.00 Loop Modeling

9.01 Using Gen KIC

� Describe the loop modeling and loop closure problems
� Describe the cyclic coordinate descent and kinematic closure approach

and identify the advantages and limitations
� Close loops by using Gen KIC protocol

PDB, Protein Data Bank; FFT, Fast Fourier Transformation; Gen KIC, Generalized Kinematic Closure.
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Table 2. List of workshop topics and learning objectives in Part II.

Current topics Students will be able to

10.00 Working with Symmetry � Create crystallographic symmetry files
� Load proteins with symmetric components
� Convert a monomer into a symmetric assembly
� Learn how to use common Rosetta protocols with symmetry enabled

11.00 Working with Density � Convert PDB density files into Rosetta-readable files
� Load density files into Rosetta
� Use RosettaDensity to score a structure and use density to guide

modeling
12.00 Working with Antibodies

12.01 Rosetta Antibody Framework and Simple Metrics
12.02 Rosetta Antibody Design

� Load antibody structures into the RosettaAntibody framework
� Retrieve antibody-specific information, such as CDR loop regions and

clusters, for use in custom protocols
� Set antibody-specific residue selectors and configure task operations for

use in modeling and design
� Design new antibodies with the RosettaAntibodyDesign protocol

13.00 Carbohydrates
13.01 Glycan Trees, Selectors, and Movers
13.02 Glycan Modeling and Design

� Load an oligosaccharide or a glycoprotein
� Use RosettaCarbohydrates to add glycans conjugated to proteins
� Evaluate sugar–sugar linkage energies
� Select carbohydrates and get carbohydrate chemical and connectivity

information
� Optimize a carbohydrate structure through linkage torsions, ring

conformers, and side-chain conformers; design carbohydrate recognition
motifs (sequons) for designing glycans into proteins

14.00 RNA Basics � Load nucleic acids and identify nucleic acid residues in poses
� Identify canonical and noncanonical base pairs in RNA structures
� View and manipulate nucleic acid torsion angles
� Evaluate nucleic acid energies by using RNA-specific low- and high-

resolution score functions; isolate RNA-specific score terms (e.g., stacking
energies, base pairing potential)

� Decompose RNA structures into three-dimensional RNA motifs
� Use idealized torsion angles for RNA residues to generate an idealized A-

form helix
� Replace RNA residues with a new sequence for homology modeling
� Use RNA fragments when building an RNA backbone and use

minimization to refine resulting structures; build a Monte Carlo search
strategy using these approaches

� Use the FARFAR protocol for sampling RNA structures, combining
fragment assembly and high-resolution minimization moves

15.00 Modeling Membrane Proteins
15.01 Accounting for the Lipid Bilayer
15.02 Membrane Protein DDG of mutation

� Use membrane tools to orient a protein in the lipid bilayer
� Calculate the lowest energy orientation for a membrane protein
� Identify membrane protein pores and cavities
� Interpret model quality by using terms from franklin2019, the membrane

energy function
� Compute the DDG of mutation

16.00 Running PyRosetta in Parallel
16.01 PyData, DDGs, and PSSMs
16.02 PyData Miniprotein Design
16.03 GNU Parallel
16.04 dask.delayed via SLURM
16.05 Ligand Docking Dask

� Parallelize macromolecule modeling tasks by using distributed
computing, elastic cloud computing, and high-performance computing
infrastructures

� Parallelize PyRosetta jobs by using GNU parallel and the SLURM job
scheduling system

� Visualize and execute PyRosetta job parallelization with the Dask module
� Analyze outputs from parallelized PyRosetta jobs in real time as

completed

CDR, Complementarity-determining regions; FARFAR, Fragment Assembly of RNA with Full Atom Refinement; PSSMs, Position-Specific
Scoring Matrices.

PyRosetta Jupyter Notebooks

Le et al. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2019.000147 114

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-15



Fig 2. Screenshot of the Pose Basics workshop module in Google Colaboratory.
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Fig 3. Notebook multimedia examples. (A) Moving GIFs of small and shear movers from ‘‘05.01 High Res Movers.’’ (B) Images and diagrams
of antibody structures from ‘‘12.00 Working with Antibodies.’’ (C) Integration of PyRosetta with py3Dmol for interactive macromolecular
visualization in Jupyter Notebooks.
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Fig 3. Continued.
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Fig 4. Example of student exercises. (A) Instructor version of ‘‘04.01 Basic Folding Algorithm’’ workshop with written solutions and (B)
student version of the workshop with omitted solutions.
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curriculums. In addition, any changes to the
repository files that would benefit the public
can be incorporated directly into the main
repository via GitHub pull requests, which can
be reviewed and approved by a RosettaCom-
mons member. Figure 6A shows a workflow for
instructors who simply want to use the
workshops in courses, and Figure 6B illustrates
a workflow for instructors who wish to make
changes to the material.

Further, in Chapter 2, we showcase the ability
to visualize macromolecules directly within the
Jupyter notebooks by using py3Dmol, a Web-
based Jupyter widget encompassing an inter-
active 3Dmol.js molecular viewer (60). The
py3Dmol bindings (in the pyrosetta.
distributed.viewer namespace) facilitate
on-the-fly, interactive visualization of PyRosetta
ResidueSelector objects, which allow stu-
dents to choose subsets of residues on the

Fig 5. Automatically generated supporting material by using nbpages. (A) Keyword index notebook with links. (B) Table of contents
notebook with links.
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basis of the sequence, chemistry, or structural
properties (Fig 3C). For those who install
PyRosetta on a local computer, the motions of
a protein in a protocol can be watched in an
external PyMOL window by using the PyRosetta
PyMOLObserver (61).

Chapter 16 demonstrates how to scale up
simulations to high-performance computing
resources by using the Slurm workload man-
ager (https://slurm.schedmd.com/) with GNU
parallel, dask and distributed mod-
ules (53, 62). We additionally introduce the
pyrosetta.distributed.dask name-
space for PyRosetta integration with the
dask-jobqueue module, providing a user-
friendly interface for PyRosetta preinitialization
of worker machines allowing options-based
configuration of macromolecular modeling
tasks in distributed computing and cloud
computing environments. These developments
will enable future pedagogic programs to
encompass advanced macromolecular model-
ing exercises and allow for additional educa-
tional content to be added with ease.

D. Learning outcomes
We piloted early versions of the notebooks in

4 separate teaching contexts. They were used in
a formal university course in spring 2019 for a
combined graduate and undergraduate elective
course, in a code academy for new graduate and
postdoctoral students and in RosettaCommons
labs and for a 1-week code school for a class of
undergraduate summer interns. Finally, we have
shared the GitHub link with several individuals
learning PyRosetta on their own.

In the spring of 2019, the formal university
course, ChemBE414/614: Protein Structure Pre-
diction and Design, enrolled 9 undergraduate
students and 11 master’s or PhD students. Over
the years, students who have taken this course
have come from departments of chemical and
biomolecular engineering, biomedical engi-
neering, biophysics, chemistry, computer sci-
ence, and applied math. In the precourse
survey, roughly half (45%) of the spring 2019
class indicated that they had ‘‘good’’ or
‘‘expert-level’’ familiarity with Python. Nearly

Fig 6. Instructor workflows. (A) Workflow without making changes. (B) Workflow with changes to share with others via pull request to the
RosettaCommons GitHub repository.
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all of these students had programming expe-
rience in some language prior to the course.
However, experience levels varied greatly in
programming, biology, chemistry, and math.
Following the course, students gave high
reviews (quality of course 4.65 of 5.00 and
teaching effectiveness 4.53 of 5.00). The bio-
molecular computation skills gained by stu-
dents were evidenced by a range of successful
course projects on topics including ‘‘Structure-
Based Prediction of Peptide-MHC Binding,’’
‘‘Finding the Relationship between Epistasis
and Score in Sequentially Mutated TEM-1 b-
Lactamase,’’ and, on the methodologic side,
‘‘Comparison of Optimization Methods Used in
Protein Structure Prediction.’’ This course used
the notebooks on local Linux (https://www.
linux.org) or Mac (Apple, Inc., Cupertino, CA)
installations, without the use of the Google
Colaboratory platform. In the pilot, multiple
students mentioned the technical challenges of
using PyRosetta on their computer in course
evaluation.

Similar to ChemBE414/614, code academy
trainees varied in programming and scientific
experience. In the precourse survey, 7 of 19 of
trainees (37%) indicated that they had ‘‘very
little to no programming experience.’’ After the
course, trainees were asked to respond to a
postcourse survey. When asked about whether
Jupyter Notebooks were effective teaching
tools, 13 of 15 respondents selected ‘‘agree’’
or ‘‘strongly agree.’’ Furthermore, all respon-
dents agreed or strongly agreed that the course
gave them confidence to write more advanced
protocols for research. Code academy trainees
completed miniprojects such as ‘‘Antibody
Design for Ebola’’ and ‘‘Modeling Intrinsically
Disordered Proteins for Cell Signaling.’’

The summer interns continued to complete
successful research projects in 10 different
academic labs and one industry research site
(36). Finally, some self-paced learners who tested
the complete multimedia workshops shared
comments including: ‘‘these notebooks make
PyRosetta more approachable to non-experts,’’
‘‘you can install PyRosetta in your Google Drive
and use it from many different machines,’’ and

‘‘attempting problems myself allowed me to
pinpoint gaps in my understanding.’’

IV. DISCUSSION
Protein structure prediction and design tools

are powerful and have the potential to impact
biophysics and many cognate disciplines, but
there are several challenges for students includ-
ing access to the tools and the varied back-
grounds of students. Here, we have described a
set of interactive notebooks for learning biomo-
lecular structure prediction and design that can
be used in a classroom context or for individual
self-study. Educators within the Rosetta com-
munity have already used these notebooks
extensively, and we hope that educators teach-
ing high school, undergraduate, and graduate
courses will also benefit from using and
adapting these notebooks. A good starting
point for new instructors to develop the
necessary background to teach these workshops
is a recent review article by Kuhlman and
Bradley (63). New instructors can complete the
workshops themselves and read the associated
primary literature linked within each notebook.

Students are advised to have some familiarity
with basic Python capabilities, including creat-
ing and calling variables, functions, and classes.
For a classroom setting, reviewing these skills
prior to attempting the workshops may be
beneficial. In ChemBE414/614 at Johns Hopkins,
the instructor spent 1 week reviewing the
necessary skills and assigned 1 homework
assignment practicing Python.

One of the advantages of this platform is that
it is free and publicly available on GitHub
(https://github.com/RosettaCommons/PyRo
setta.notebooks). Another advantage is that
PyRosetta can be accessed through the Google
Colaboratory online in a Web browser, which
requires no local computer installation and can
quickly integrate open-source packages. In
addition to its accessibility, Google Colaboratory
provides students with free and powerful
computational resources (45). These advantages
address the current technologic challenges with
the current resources for PyRosetta. This online
platform also provides an environment for
multimodal learning material, such as molecular
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visualization movies and coding examples. With
a broad scope of topics from contributors of
different areas of expertise, students are also
able to gain exposure to the different applica-
tions of PyRosetta and develop the skills to
pursue more in-depth applications. For instruc-
tors, this set of modules can be easily adapted to
a course syllabus by modifying workshops or
adding relevant examples.

In addition to the advantages, the platform
has some limits. The Google Colaboratory
platform complicates communication with the
visualization software PyMOL (48), and we have
so far been unable to make this connection
simple. Although the PyMOLObserver is the
archetypal tool for real-time visualization of
PyRosetta modeling trajectories (61), students
with a local installation of PyRosetta are,
nevertheless, able to view the algorithms in
real-time on the local computer’s PyMOL. Within
the Google Colaboratory, the pyrosetta.
distributed.viewer (with py3Dmol bind-
ings) currently supports dynamic visualization
updates upon biomolecular conformational
changes, which is convenient for viewing
intermediate steps of biomolecular modeling
tasks, such as between PyRosetta movers,
directly within Jupyter Notebooks. Although
the pyrosetta.distributed.viewer
mimics only a subset of PyMOL functionalities,
it accepts ResidueSelector-based user in-
puts, thus allowing a more streamlined interface
to interactive biomolecular modeling and de-
sign. However, because py3Dmol does not have
multithreading or communication between
threads, Google Colaboratory users cannot
continuously update an instance of the
3Dmol.js molecular viewer as a PyRosetta
protocol trajectory is calculated.

Our notebooks may be compared with
other educational materials for computational
molecular biophysics. There are several text-
book-style software resources, such as the
beginner’s guide to CHARMM (64) and the
Web-based lessons on CHARMM (65). Recently,
MOE has been used for an integrated engi-
neering curriculum (66). Additionally, Foldit
(67) and EteRNA (68) have been used in an
interdisciplinary week-long program for un-

dergraduate and high school students (69).
Our contribution of PyRosetta notebooks is
complementary to these and has advantages
with its active involvement of students,
multimedia integration, and engagement with
viable and leading tools that can be used
flexibly in new, innovative research. In addi-
tion, unlike many other electronic workshop
materials, the PyRosetta notebooks are used
to automatically test new versions of the
PyRosetta software. Each Jupyter Notebook is
converted into a simple Python script that is
run continually on the community’s testing
servers, and any malfunctions from new or
modified code must be fixed before accepted
into the main Rosetta repository. The auto-
mated notebook testing and GitHub pull
request practices ensure that the workshops
always remain functional for users.

Overall, the PyRosetta notebooks are de-
signed to be a gateway tool to introduce
students to the fundamentals of biomolecular
structure prediction and design. This platform
could potentially be used in high school lab
courses, science, technology, engineering, and
mathematics summer programs, advanced
undergraduate courses, as well as graduate
courses. In addition, we encourage students to
seek additional support from the distributed,
collaborative network by posting on the
RosettaCommons forum (https://www.rosetta
commons.org/forum). In addition, Google Co-
laboratory is compatible with TensorFlow
(https://www.tensorflow.org/) and is heavily
used for developing machine learning models
because of the free graphics processing unit
resources. In the future, machine learning could
be incorporated with the capabilities of PyRo-
setta to explore new areas of research in the
field (70). Furthermore, the GitHub archive is a
living collection that will continually expand to
include other applications of PyRosetta and
aspects of macromolecular modeling to intro-
duce a broader audience to the field.
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