
RESEARCH ARTICLE

A Flexible Laboratory Exercise
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ABSTRACT Mean squared displacement is a standard biophysical tool for
characterizing the motion of particles in a thermally dominated environment, yet it
is rarely formally introduced or discussed in undergraduate curriculum. Here, we
provide a flexible and adaptable experimental or computational lab activity that
provides a practical introduction to mean squared displacement and anomalous
diffusion that includes optional experimental protocols and computational
simulation techniques for data collection and discusses a variety of analysis
techniques. This lab activity has been implemented both face-to-face and
completely online and provides crucial experience in important research techniques,
helping to bridge traditional undergraduate curriculum and modern biophysics
research.
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I. INTRODUCTION
Numerically averaging data to extract meaningful physical

parameters is a fundamental process in quantitative science, yet it
is often taken for granted. Because of the explosion of single-particle
tracking experiments and automated high-throughput microscopy,
mean squared displacement (MSD) has become a standard
measurement across a wide range of biophysical disciplines (1).
Despite its ubiquity in biophysics research, undergraduate students
are rarely formally introduced to MSD or the practical aspects of the
calculation. Here, we present a flexible experimental or computa-
tional laboratory exercise that we believe fills a critical gap in
undergraduate biophysics education and will better prepare the next
generation of biophysicists for the challenges and rigor of
interdisciplinary experimental science.

Mean squared displacement was first theoretically described by
Albert Einstein in one of his 4 infamous Annus mirabilis publications of
1905 (2, 3). Nearly a century earlier, Robert Brown observed that small
pollen particles suspended in water jiggle around randomly in space, a
phenomenon now aptly referred to as Brownian motion, but was
unable to determine the source of the motion (4). Einstein’s theory
connected the thermal motion of the molecules in the surrounding
fluid to the Brownian motion of the pollen: the pollen particles are
constantly being bombarded by fast-moving water molecules
traveling in random directions. Although we cannot directly observe
the motion of the water molecules, the motion of the pollen provides
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insight into the surrounding fluid environment.
This work provided a theoretical prediction for
Jean Baptiste Perrin to verify experimentally,
effectively proving the still controversial atomic
theory of matter (5).

A particle undergoing Brownian motion
tends to travel away from its initial position, a
process called diffusion. Einstein showed that
the average squared distance a diffusing
particle travels in 1 dimension is directly
proportional to time,

x tð Þ � xð0Þð Þ2
D E

¼ 2Dt;

where the constant D is referred to as the
diffusion constant of the particle, which de-
pends on the size and shape of the object as
well as material properties of the surrounding
medium. Note that the factor of 2 applies to 1-
dimensional diffusion; 2- and 3-dimensional
diffusion have the same time dependence,
but instead include factors of 4 and 6,
respectively.

Einstein’s theory relies on the Brownian
motion of the particle being truly random: the
motion at any time point should be completely
uncorrelated with any previous motion. In
contrast, if we consider a particle undergoing
motion at a constant velocity, where at each
point in time the particle is traveling at the
same speed and in the same direction as the
prior time point, its equation of motion would
be x(t)¼ vtþ x0, and the MSD would instead be
proportional to the squared time.

Since Einstein’s seminal work, it has been
shown that there is essentially a continuous
spectrum of MSD behavior,

x tð Þ � x 0ð Þð Þh i2 } ta;

where the value of a provides information
about the physical environment of the particle.
An a ¼ 1 represents pure diffusion, a ¼ 2
represents ballistic motion (constant velocity),
and fractional values are generally referred to
as anomalous or non-Brownian diffusion (6, 7).

Anomalous diffusion typically arises from a
diffusing particle interacting with its local
environment in a nonrandom or correlated
manner. For instance, proteins diffusing in both

prokaryotic and eukaryotic cells exhibit sub-
diffusive motion (a ~ 0.7) because of viscoelas-
tic properties of the cytoplasm that lead to
anticorrelated motion (8–10). A number of
biological systems exhibit subdiffusive motion
(a , 1) because of similar mechanisms (e.g.,
bacterial plasmids and chromosomal loci [a ~
0.4] and eukaryotic cytoskeletal networks [a ~
0.7]) (11–14). Some biological systems exhibit
superdiffusive motion a . 1, typically associat-
ed with active transport (e.g., cargo carried by
molecular motors) (15).

Many different physical processes can lead to
anomalous diffusion (e.g., viscoelasticity, mem-
ory, short-timescale binding events, molecular
crowding) that result in different values of the
exponent a (14). Thus, one of the most
powerful biological applications of MSD mea-
surements is analyzing the motion of a probe
particle in vivo. By experimentally determining
the functional form of the MSD we can
elucidate mechanical details about the physical
environment of the diffusing particle that are
otherwise inaccessible (Fig 1).

Although popular undergraduate biophysics
textbooks introduce the concepts of diffusion
and MSD, most do not discuss the practical

Fig 1. Many biological systems exhibit anomalous diffusion, where
the mean squared displacement is nonlinear in time. Chromosomal
loci and cytoplasmic proteins in bacteria are subdiffusive (a , 1),
whereas molecular motors and other active transport are
superdiffusive (a . 1), leading to variations in the functional form
of the mean squared displacement. Note that figure is not to scale.
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aspects of calculating MSD with the use of a
variety of experimental data (16, 17). A number
of laboratory exercises on characterizing diffusive
systems have been described (18–23), but our
goal here is to provide a laboratory exercise to
introduce upper-level undergraduates to MSD
that is flexible, modular, and applicable to a
variety of institutions, departments, and teaching
modalities. In our version of the exercise we
focus our analysis on one practical consideration
of MSD, ergodicity, in which averaging can either
be taken over a single trajectory (time averaging)
or as an average over many independent
trajectories (ensemble averaging) (24, 25). For
purely diffusive systems, the choice to perform
either averaging method is typically determined
by the practical limitations of the experiment.
But, systems that exhibit anomalous diffusion
tend to be non-ergodic; therefore, differences
between averaging methods can be another
indicator of anomalous behavior (24). Thus, our
version of this exercise exploits MSD to focus less
on calculating specific numbers and more on
answering the question: Is the system purely
diffusive or not?

The first implementation of this exercise was
designed to be a standalone lab in our
Experimental Biophysics course to be complet-
ed over three, 3-h meetings with 3-4 students
(predominantly physics majors) working to-
gether in lab groups, with students submitting
individual 4–6-page lab reports. Because of
COVID-19 restrictions, the second implementa-
tion was employed completely online, with
students performing particle tracking and data
analysis on their personal computers asynchro-
nously. Our institution offers 2 undergraduate
courses in biophysics, Computational Biophys-
ics and Experimental Biophysics, but this
exercise could be performed in any computa-
tionally intensive upper-division course (e.g.,
computational physics, advanced lab).

Here, we include methods for data collection
with micron-scale (lm) beads in inexpensive
custom-made microchambers, open-source
code for creating simulated particle trajectories,
and preproduced simulated particle trajecto-
ries. We also include lesson plans for data
analysis with both open-source code as well as

instructions for spreadsheet processing de-
pending on the intended level of instruction.

II. SCIENTIFIC AND
PEDAGOGICAL BACKGROUND

The mean squared displacement of a particle
confined to move in 1 dimension is defined as
h(x(t) � x(0))2i, where the angle brackets
represent the arithmetic mean of a set of
uncorrelated trajectories. For a particle under-
going pure diffusion, the MSD is proportional
to time, h(x(t) � x(0))2i ¼ 2Dt, where D is the
diffusion constant of the particle.

A. Random walk model
The diffusion of small particles is well

modeled by a random walk, where the
trajectory of a particle can be approximated
as a set of uncorrelated steps in random
directions. To understand the source of linear
time dependence in a diffusive MSD, we
summarize the classic approach of Howard
Berg (26): we can define the position of a
particle undergoing 1-dimensional diffusion
as:

x nþ 1ð Þ ¼ x nð Þ þ Pd;

where n represents the number of steps, d
represents the step size, and P is randomly
chosen as eitherþ1 or�1. If we now consider a
set of N trajectories, we can take the mean
position at (n þ 1) as

1

N

XN

i¼1

x nþ 1ð Þ ¼ 1

N

XN

i¼1

x nð Þ þ Pidð Þ

1

N

XN

i¼1

x nþ 1ð Þ ¼ 1

N

XN

i¼1

x nð Þ þ 1

N

XN

i¼1

Pid

because Pi has equal probability of being þ1
or �1. As N gets large the last term sums to
zero, and we can see that the mean position
of the particles does not evolve in time; that
is,

x nþ 1ð Þh i ¼ x nð Þh i:
Therefore, if all our particles start at x¼ 0, the
mean position of all trajectories will remain
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constant (i.e., h x(t)i ¼ 0). If we now consider
the squared position of our particle,

x2 nþ 1ð Þ ¼ x nð Þ þ Pdð Þ2

¼ x2 nð Þ þ P2d2 þ 2Pdx nð Þ;

and again take the arithmetic mean of N
trajectories,

1

N

XN

i¼1

x2 nþ 1ð Þ ¼ 1

N

XN

i¼1

x2 nð Þ þ 1

N

XN

i¼1

Pi
2d2

þ 1

N

XN

i¼1

2Pdx nð Þ;

the last term is again linear in P and should
sum to zero, but now we are left with

x2 nþ 1ð Þ
� �

� x2 nð Þ
� �

¼ 1

N
Nd2
� �

¼ d2:

So we see that each successive step is a
distance d away from the previous step, which
in hindsight is an assumption of our model. At
each successive step, we add another d2 such
that after N steps,

x2 Nð Þ
� �

� x2 0ð Þ
� �

¼ Nd2:

If we assume that we take a constant number
of steps per unit time, we can rewrite our MSD as

ðx tð Þ � x 0ð ÞÞh i2 } Dt;

where we define D roughly as the square of the
average step size per unit time.

B. Binomial distribution and Fick’s
law

For a more advanced introduction to diffu-
sion, instructors may want to discuss the
continuous limit of our random stepping
model. We again suggest Berg (26) as an
excellent reference, but for completeness we
will again summarize his approach. The most
straightforward extension of the random step-
ping model is to represent the position of our
random walker using a binomial distribution,
where the probability of taking exactly L steps
to the left after N random steps is

p L;Nð Þ ¼ N!

L! N� Lð Þ! ð1=2ÞN:

The total number of steps away from the
origin (S) is just the number of steps to the left
minus the number of steps to the right, which
we can represent as (N � L), such that

S L;Nð Þ ¼ L� N� Lð Þð Þ ¼ 2L� Nð Þ:
Thus, but substituting S into our probability
function, we have

p S;Nð Þ ¼ N!
SþN

2

� �
! S�N

2

� �
!
ð1=2ÞN:

For typical experimental conditions in which
the random movement of particles is driven by
thermal fluctuations (e.g., tracking a protein in
a cell), we assume our walker takes a large
number of very small steps during our obser-
vations. In this limit, we assume N to be very
large, and because we have equal probability of
taking a step to the left or right, we will also
assume that the net number of steps from the
origin (S) is much smaller than the total number
of steps taken. Using these 2 approximations,
we can make use of Stirling’s approximation to
simplify the factorials and a Taylor expansion of
the resulting logarithms (a useful exercise) to
derive the ubiquitous Gaussian (normal) distri-
bution,

p S;Nð ÞdS ¼ 1

2pNð Þ1=2
exp �S2=2N
� �

dS;

which represents the probability of finding our
random walker in a region of space between S
and S þ dS. We can now repeat a similar
approach as the last section by defining a time
step s, such that the number of steps N ¼ t/s,
and a step size d, such that the distance from
the origin is x ¼ Sd. By substituting our
expression for x and defining a new constant
D ¼ d2/2s, we arrive at the classic probability
distribution for a 1-dimensional diffusing parti-
cle,

p x; tð Þdx ¼ 1

4pDtð Þ1=2
exp � x � x0ð Þ2=4Dt
� �

dx;

where we have generalized the initial position
of the particle as x0. For any function f(x, t), the
average value, or expectation value, of that
function in time is given by
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f xð Þh i ¼
Z‘

�‘

f xð Þp x; tð Þdt:

Thus, the average value for the function f(x, t)¼
(x(t) � x0)2 is given by

x tð Þ � x0ð Þh i2 ¼
Z‘

�‘

x tð Þ � x0ð Þ2p x; tð Þdt

¼ 2Dt:

A useful extension of this derivation for
advanced students is to show by direct
substitution that our probability density func-
tion p(x, t) for a diffusing particle in 1 dimension
is also a solution to Fick’s law:

]p x; tð Þ
]t

¼ D
]2p x; tð Þ

]x2
:

III. MATERIALS AND METHODS
Our aim is that this exercise is flexible and

modular such that it can be implemented in a
variety of different environments and modali-
ties. The learning objectives for our face-to-face
version of this exercise focus primarily on
developing and applying experimental skills
and analysis techniques applicable to modern
biophysical research. These include literature
review, sample preparation, microscopy, auto-
mated image analysis, and data analysis. An
instructor of a more theoretical course may
want to instead focus more on the scientific
background of MSD, whereas an instructor of a
computationally intensive course may want to
focus more on simulation techniques or ad-
vanced statistical analysis. Furthermore, to
make this exercise as accessible and equitable
as possible, all of our protocols make use of
freely available, open-source software. We also
provide sample simulation and analysis pro-
grams, as well as prepackaged data as Supple-
mental Material.

A. Data collection
To make this exercise accessible to a range of

educational environments with a variety of
time and equipment commitment, we provide

3 options for data collection in descending
order of investment: tracking micron-sized
bead diffusion by microscopy, simulating par-
ticle trajectories by molecular dynamics, and a
spreadsheet of prepackaged trajectories ready
for analysis.

1. Bead microscopy
The richest version of this exercise includes

collecting data of real diffusing particles be-
cause it requires the student to make decisions
about practical aspects of experimental science
(e.g., how many trajectories to collect, how
long each trajectory should be), as well as
address the limitations of the data itself (e.g.,
beads traveling in and out of focus). The
following protocol is specific for our implemen-
tation of this exercise but can be easily
modified for any high-magnification optical
microscope equipped with a high-resolution
digital camera. Note that in this implementa-
tion, data was collected by groups of 3
students over two, 3-h lab sessions.

Custom-made microchambers are construct-
ed by placing 2 pieces of clear double-stick
tape lengthwise on a standard microscope slide
spaced approximately 1–2 mm away from each
other. A standard 22 3 22-mm coverslip is
placed on top of the tape, forming an open-
ended channel with a volume of approximately
10 lL. A solution of suspended micron-sized
silica beads can be pipetted through the
channel by capillary action (Thorlabs, Newton,
NJ; catalog OTKBTK), and each end can be
sealed with nail polish or VALP, a heated wax
mixture equal parts by weight of Vaseline
(petroleum jelly), lanolin, and paraffin. A
diagram of the slide design is included in
Supplemental Figure S1. Note that tracking
efficiency can be increased by the use of
fluorescent beads (Thermo Fisher, Waltham,
MA; catalog F13839), but they are not required.
A variety of microscope control software and
particle tracking tools are available, but in our
implementation, time series images were col-
lected by the open-source microscopy software
lManager, version 1.4 (27, 28) and particle
trajectories were created using the open-source
particle tracking software TrackMate, version
4.0.0 (29) implemented through the open-
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source image-processing package Fiji (30). The
frame rate and total number of frames are
determined by the students and limited by the
available computer memory, but typical data is
on the order of 1 frame per second for at least
100 seconds.

2. Simulated particle trajectories
An alternative version of this activity that

provides equally valuable experience as gath-
ering empirical data is producing particle
trajectories by a simple random walk compu-
tational simulation. If time permits, we suggest
acquiring both experimental and simulated
trajectories to expose students to the impor-
tant practical process of extracting relevant
physical parameters (e.g., the diffusion con-
stant) from simulations and comparing them
with experimental data.

Numerous platforms and languages can be
used to produce random walk trajectories,
including spreadsheet programs; therefore, we
begin by outlining the general simulation
approach in a way that can be applied to a
number of different programming environ-
ments. We also include a set of GNU Octave,
version 4.4.1 (31) scripts (compatible with
MATLAB) that produce particle trajectories, as
well as a set of preproduced trajectories as
Supplemental Material.

An individual particle trajectory is simulated
by a recursive Langevin dynamics approach,

x t þ dtð Þ ¼ x tð Þ þ n 2Ddtð Þ1=2;

where D is the diffusion constant, dt is the
simulation timestep, and n is a random number
pulled from a normal distribution with mean 0
and variance 1. The simulation units are
determined by the choice of both D and dt
(e.g., if the simulated particle has a known
diffusion constant of 1 lm2/s, a choice of D¼ 1
and dt ¼ 1 would give a timestep of 1 second
and a distance unit of microns). To simulate
higher dimensional motion, the recipe is the
same, except that the random displacements in
each direction should be uncorrelated, such
that at each time step is

x t þ dtð Þ ¼ x tð Þ þ nx 2Ddtð Þ1=2

y t þ dtð Þ ¼ y tð Þ þ ny 2Ddtð Þ1=2

z t þ dtð Þ ¼ z tð Þ þ nz 2Ddtð Þ1=2

~r t þ dtð Þ ¼ x t þ dtð Þ̂i þ y t þ dtð Þ̂j
þ z t þ dtð Þk̂:

Because a significant amount of cellular-scale
transport relies on biasing diffusive motion
[e.g., molecular motors (32) and DNA partition-
ing (12, 33)], an extremely useful and relevant
extension of the simulation is to introduce
some bias in the motion and further character-
ize the resulting MSD. Bias can be introduced
by either adding a constant velocity term to the
recursive relation (i.e., vdt) or by pulling n from
a normal distribution with a nonzero mean.

IV. DATA ANALYSIS
A. Visualizing mean squared
displacement

The first task we have our students perform
after data collection is to plot all the trajectories
on a single plot (Fig 2). Because this lab occurs in
an upper-division course at our institution, we
have our students plot in the open-source
scientific programing language GNU Octave
(31), which is compatible with the widely used
proprietary software Matlab, but these plots can
also be easily made in any spreadsheet software
(e.g., Excel, Open Office, Google Sheets). By
plotting the trajectories on a single graph,
fundamental properties of the average displace-
ment for an ensemble of tracks (e.g., zero mean
and nonzero squared mean) can be easily
visualized. A valuable extension of this exercise
is also to plot a small number of tracks (N , 5) to
demonstrate the variability in the data and the
necessity of analyzing enough data to produce a
meaningful average (Fig 2, inset).

B. Computing mean squared
displacement

The next task for our students is to deter-
mine the mean squared displacement MSD(t)¼
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h(x(t) � x(0))2i, where the average should be
taken over a set of uncorrelated trajectories.
Typically an experiment will either produce a
large set of uncorrelated trajectories by default
(e.g., tracking the diffusion of many fluorescent
beads in a single field of view) or produce a
small set of long trajectories (e.g., the motion of
a fluorescently tagged protein in a cell).

In the prior case, which we refer to as the
ensemble method, computing the MSD is
relatively straightforward. The process can be
performed in a number of ways, but here we
give a procedure for finding the MSD with a
simple spreadsheet program by importing the
trajectory data as columns on a spreadsheet.
For each column (trajectory), subtract the value
of the first time point from all successive time
points and then square all of the values in the
column. This should be the squared displace-
ment for each trajectory. To compute the
average at each time point [e.g., MSD(t)], simply
average over all the rows at that time point,
producing a new column of data, the MSD(t).
Additional statistical parameters can be calcu-
lated at this point as well (e.g., the variance,

standard deviation, and standard error), if
applicable to the lesson. An example GNU
Octave (31) script for calculating the ensemble
MSD is included as Supplemental Material.

The latter case, which we refer to as the time-
average method, is qualitatively straightforward
but computationally more difficult than the
ensemble method. The basic approach is to
break a longer single trajectory of time duration
N into many individual, nonoverlapping sub-
tracks of length Dt. For each subtrack, the
squared displacement from the final position to
the initial position can be calculated, and then
the MSD(Dt) for that particular time value is the
average value of the displacement for all of the
subtracks. The process is then repeated for a
new set of nonoverlapping tracks of length (tþ
1), and so on until the trajectory can no longer
be split into independent overlapping tracks (t/
N , 2).

Because the single trajectory is being cut into
nonoverlapping pieces, the number of inde-
pendent trajectories used for averaging drops
precipitously with increasing window size,
drastically increasing the standard error. To
mitigate this effect, Qian et al. (34) developed
an analysis method that allows for splitting
single trajectories into overlapping, and thus
correlated, subtrajectories. In this approach,
referred to as the sliding window averaging
method, the trajectory is again split into tracks
of length Dt, but now the first track is from (t0

� t0þDt), the second track from (t1 � t1þDt),
and so on. Just as before, the squared
displacement for each subtrack is calculated,
and the average is the MSD(Dt) for that window
size. Although the sliding window method
drastically increases the number of subtrajec-
tories used in the average, the correlation
between subtrajectories becomes an issue as
the window size increases. As the window size
approaches the length of the total trajectory,
the squared displacements become nearly
identical because the first and last points of
each subtrajectory are very near each other,
and thus the average is no longer meaningful.
To account for correlated tracks, Qian et al. (34)
modified the standard error to

Fig 2. The displacement trajectories of 150 different simulated
beads by ensembleRun is plotted above. The full distribution of
tracks exhibits zero mean displacement with a width of
approximately (2Dt)1/2 symmetric about the mean. The inset shows
a nonzero mean displacement for a small number of trajectories,
demonstrating the practical necessity of carefully considering the
number of independent trajectories used in mean squared
displacement analysis.
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SE ¼ 2Dt
2t2 þ 1

3t N� t þ 1ð Þ

� 	1=2

;

where N is again the total number of time
points in the track. A representation of the
process for creating uncorrelated single tracks,
as well as correlated sliding window tracks, is
shown in Figure 3. An example of a GNU Octave
(31) script for calculating both the uncorrelated
time average and sliding window MSDs is
included as Supplemental Material.

C. Fitting mean squared
displacement

The final set of analysis that we have our
students perform is fitting their MSD functions,
calculating relevant statistics, and testing for
ergodicity. To first order, if their trajectories are
purely diffusive and uncorrelated, their data
should be well modeled by a proportional fit,
where the slope of the line is proportional to
the diffusion constant. The Stokes-Einstein
equation,

D ¼ kbT

6pgR
;

famously relates the diffusion constant of a

spherical particle of radius R to the thermody-
namic energy (kbT) dissipated by friction
because of the viscous diffusive medium
(dynamic viscosity ). By calculating the empir-
ical value of the diffusion coefficient from MSD
data, students can compare their results to a
theoretical value for a known particle size or
determine physical properties of the system
(e.g., temperature, viscosity). If the trajectories
are created through simulations, similar learn-
ing objectives could be achieved by adjusting
parameters in the track simulations and mea-
suring the effects. A more advanced or
computationally intensive implementation of
this lab could include an expanded error
analysis of the diffusion constant or more
statistically advanced methods for determining
the diffusion constant (e.g., maximum likeli-
hood estimates), described thoroughly in the
literature (35–37).

If the particles are undergoing pure diffusion,
where each time step is completely uncorrelat-
ed, the process should be ergodic, and either
time averaging a single track or ensemble
averaging a set of tracks should provide the
same diffusion coefficient. However, a practical
consideration must be addressed in any exper-
imental design: the statistical significance of the
mean. In most cases, the primary consideration
is the amount of data for a given interval of
time. For ensemble averaging, we always have
the same number of data points to average,
and thus the standard error grows linearly. For
single-track averaging, though, the number of
data points diminishes with increased window
size. For small time intervals, the single track
may have a lower standard error than the
ensemble (Fig 4A), whereas for long intervals,
the ensemble will win, as seen in the inset of
Figure 4A. The correlated time steps used in the
sliding window method can reduce the stan-
dard error of a long track at smaller time steps,
as seen in Figure 4B; however, the corrected
standard error grows rapidly at larger time
steps (Fig 4B, inset). Therefore, if one is
interested in exploring short-timescale dynam-
ics, an experiment should be designed to
capture a small number of long trajectories,
whereas a large number of shorter trajectories

Fig 3. Visualizing the time average and sliding window methods for
a single trajectory (center). The larger green box encloses 1 of 3
uncorrelated tracks used in the time average method shown above
the single trajectory. The smaller orange box represents one of the
many correlated tracks used in the sliding window method shown
below the main trajectory.
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is more appropriate for long-timescale investi-
gations.

V. RESULTS AND DISCUSSION
We have employed this lab twice in our

Experimental Biophysics lab course in 2 differ-
ent modalities: face-to-face and completely
online (because of COVID-19 restrictions). In
the face-to-face version, students prepared
slides and took data during the first 3-hour
lab session, took additional data and began
analysis in the second session, and completed
analysis in the final session. In the online
version, students were provided movie files of
diffusing beads and performed particle tracking
and analysis on their own computers asynchro-
nously over a 3-week period. The use of free,
open-source software was especially important
to provide an equitable online learning envi-
ronment. While lab groups and online discus-
sion boards were facilitated through our
learning management system (Canvas), the
majority of students appeared to have com-
pleted the exercise alone.

The most challenging component of the lab
for students is the computational analysis,
specifically the time-averaged (sliding window)

method for determining the MSD from a single
trajectory. This is due to both conceptual
misunderstanding and the computational chal-
lenge. In both teaching modalities, we initially
provided little detail on how to calculate the
averages, relying on the students to perform
background literature review, which is a prima-
ry learning outcome of the course. This
approach worked much better in the face-to-
face version, where analysis was performed in
the lab under instructor supervision, than in the
online version, where analysis was performed
individually and asynchronously. Because the
primary goal of our version of the exercise was
to verify ergodicity, the inconsistencies in time
average analysis caused many students to
arrive at the wrong conclusions. In whatever
modality we employ this exercise next, we plan
on providing more detailed instructions on
how to compute the averages to alleviate
student confusion and frustration and ensure
that they arrive at the correct conclusions.

VI. CONCLUSION
Because of the relatively young age and

broad skillset of the field of biophysics, many of
the standard research techniques used in

Fig 4. (A) The mean squared displacement (MSD) for the sliding window average (orange) and ensemble average (blue) methods. At
smaller time intervals the sliding window method has significantly smaller standard error, whereas for larger time intervals the ensemble
method has lower standard error because of correlation in the sliding window method. (B) MSD for the sliding window average (orange)
and the uncorrelated time average (red) methods. Again, the sliding window is less noisy at short time intervals but its standard error grows
dramatically with increasing time intervals because of strong correlations.
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graduate school and beyond have yet to be
formally integrated into the undergraduate
curriculum. Mean squared displacement has
become a ubiquitous tool for characterizing
biological systems, especially since the advent
of fluorescence microscopy and sophisticated
particle tracking algorithms. We believe that
this flexible and adaptable activity can be
successfully implemented in upper-division
undergraduate courses across multiple disci-
plines and modalities, including courses that do
not have a biological focus. The concepts
discussed and skills gained are applicable to a
broad range of science, technology, engineer-
ing, and math careers and will help the next
generation of biophysicists be more prepared
for our dynamic and rapidly expanding field.
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14. Höfling, F., and T. Franosch. 2013. Anomalous transport in the crowded world of
biological cells. Rep Prog Phys 76(4). https://doi.org/10.1088/0034-4885/76/4/
046602.

15. Pierobon, P., S. Achouri, S. Courty, A. R. Dunn, J. A. Spudich, M. Dahan, and G.
Cappello. 2009. Velocity, processivity, and individual steps of single myosin V
molecules in live cells. Biophys J 96(10):4268–4275.

16. Phillips, R., J. Kondev, J. Theriot, and H. Garcia. 2012. Physical Biology of the Cell.
Garland Science, New York.

17. Nelson, P. 2004. Chapter 4. In Biological Physics. WH Freeman, New York, pp.
315–332.

18. Eckler, L. H., and M. J. Nee. 2016. A simple molecular dynamics lab to calculate
viscosity as a function of temperature. J Chem Educ 93(5):927–931.

19. Krishnatreya, B. J., A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-
Meya, and D. G. Grier. 2014. Measuring Boltzmann’s constant through
holographic video microscopy of a single colloidal sphere. Am J Phys 82(1):23–31.

20. Jia, D., J., Hamilton, L. M. Zaman, and A. Goonewardene. 2007. The time, size,
viscosity, and temperature dependence of the Brownian motion of polystyrene
microspheres. Am J Phys 75(2):111–115.

21. Nakroshis, P., M. Amoroso, J. Legere, and C. Smith. 2003. Measuring Boltzmann’s
constant using video microscopy of Brownian motion. Am J Phys 71(6):568–573.

22. Catipovic, M. A., P. M. Tyler, J. G. Trapani, and A. R. Carter. 2013. Improving the
quantification of Brownian motion. Am J Phys 81(7):48.

23. Moore, K., J. Giannini, and W. Losert. 2014. Toward better physics labs for future
biologists. Am J Phys 82(5):387–393.

24. Metzler, R., J. H. Jeon, A. G. Cherstvy, and E. Barkai. 2014. Anomalous diffusion
models and their properties: non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164.

25. Lebowitz, J. L., and O. Penrose. 1973. Modern ergodic theory. Phys Today
26(2):23–29.

26. Berg, Howard C. 1993. Random Walks in Biology. Princeton University Press,
Princeton, NJ.

27. Edelstein, A. D., M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N.
Stuurman. 2014. Advanced methods of microscope control using lManager
software. J Biol Methods 1(2). https://doi.org/10.14440/jbm.2014.36.

28. Edelstein, A., N. Amodaj, K. Hoover, R. Vale, and N. Stuurman. 2010. Computer
control of microscopes using lManager. Curr Protoc Mol Biol 92(1):14–20.

29. Tinevez, J. Y., N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine,
S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri. 2016. TrackMate: an open and
extensible platform for single-particle tracking. Methods 115:80–90.

30. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V.
Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: an open-source
platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/
10.1038/nmeth.2019.

31. Eaton, J. W., D. Bateman, S. Hauberg, and R. Wehbring. 2018. GNU Octave version
4.4.1 manual: a high-level interactive language for numerical computations.
Accessed 1 June 2020. https://www.gnu.org/software/octave/doc/v4.4.1/.

32. Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Acc
Chem Res 34(6):412–420.

33. Hu, L., A. G. Vecchiarelli, K. Mizuuchi, K. C. Neuman, and J. Liu. 2017. Brownian
ratchet mechanisms of ParA-mediated partitioning. Plasmid 92:12–16. https://doi.
org/10.1016/j.plasmid.2017.05.002.

Mean squared displacement lab exercise

Mantilla and Kuwada. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2020.000157 135

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-15

https://doi.org/10.35459/tbp.2020.000157.s1
https://doi.org/10.35459/tbp.2020.000157.s2
https://doi.org/10.35459/tbp.2020.000157.s3
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://www.nobelprize.org/prizes/physics/1926/perrin/lecture
https://www.nobelprize.org/prizes/physics/1926/perrin/lecture
https://doi.org/10.3389/fphy.2019.00018
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.93.078102
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.1103/PhysRevLett.92.178101
https://doi.org/10.1103/PhysRevLett.92.178101
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.14440/jbm.2014.36
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://www.gnu.org/software/octave/doc/v4.4.1/
https://doi.org/10.1016/j.plasmid.2017.05.002
https://doi.org/10.1016/j.plasmid.2017.05.002


34. Qian, H., M. P. Sheetz, and E. L. Elson. 1991. Single particle tracking. Analysis of
diffusion and flow in two-dimensional systems. Biophys J 60(4):910–921.

35. Michalet, X. 2010. Mean square displacement analysis of single-particle
trajectories with localization error: Brownian motion in an isotropic medium. Phys
Rev E 82(4). https://doi.org/10.1103/PhysRevE.82.041914.

36. Berglund, A. J. 2010. Statistics of camera-based single-particle tracking. Phys Rev E
82(1). https://doi.org/10.1103/PhysRevE.82.011917.

37. Strey, H. H. 2019. Estimation of parameters from time traces originating from an
Ornstein-Uhlenbeck process. Phys Rev E 100(6). https://doi.org/10.1103/PhysRevE.
100.062142.

Mean squared displacement lab exercise

Mantilla and Kuwada. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2020.000157 136

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-15

https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1103/PhysRevE.82.011917
https://doi.org/10.1103/PhysRevE.100.062142
https://doi.org/10.1103/PhysRevE.100.062142

