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ABSTRACT The aim of this article is to introduce the basic principles behind
the widely used microscopy tool: fluorescence fluctuation correlation spectroscopy
(FFCS). We present the fundamentals behind single spot acquisition (FCS) and its
extension to spatiotemporal sampling, which is implemented through image
correlation spectroscopy (ICS). The article is an educational guide that introduces
theoretic concepts of FCS and some of the ICS techniques, followed by interactive
exercises in MATLAB. There, the learner can simulate data time series and the
application of various FFCS techniques, as well as learn how to measure diffusion
coefficients, molecular flow, and concentration of particles. Additionally, each
section is followed by a short exercise to reinforce learning concepts by simulating
different scenarios, seek verification of outcomes, and make comparisons.
Furthermore, we invite the learner throughout the article to consult the literature for
different extensions of FFCS techniques that allow measurements of different
physicochemical properties of materials. Upon completion of the modules, we
anticipate the learner will gain a good understanding in the field of FFCS that will
encourage further exploration and adoption of the FFCS tools in future research and
educational practices.

KEY WORDS fluorescence fluctuation correlation spectroscopy; concentration
and dynamics characterisation; quantitative microscopy; image simulation and
analysis

I. INTRODUCTION
It has been nearly half a century since the first papers established

the foundations on fluorescence correlation spectroscopy (FCS) were
reported (1, 2). In its basic form, FCS (Fig 1A,B) was used to measure
the chemical reactions and diffusion coefficients of an ensemble of
particles in a steady state, by measuring the temporal thermal
fluctuation in particle local concentrations within a focused beam of
light. This fundamental work has been further developed alongside
the improvement in modern confocal microscopes to result in
fluorescence fluctuation correlation spectroscopy (FFCS) that permits
dual-color colocalization analysis (3) to measure proteins conforma-
tional states, protein–protein interactions, dynamics, and kinetics (4–
8). For detailed reviews on FCS extensions and applications, we direct
the readers to more in-depth reviews (9, 10).

Modern laser scanning confocal microscopes (LSCM) have become a
major tool in the researchers toolbox and now provide better signal to
noise data, faster imaging rates and sampling in several dimensions (x,
y, z, t, k). Not surprisingly, this influenced the extension of FCS into
spatial sampling, or image correlation spectroscopy (ICS). Some of the
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Fig 1. (A) In the FCS experiment, an excitation volume is focused within cell region of interest and fluorescent molecules are illuminated as
they transit through. (B) FCS measures the fluorescence fluctuations in time from an observation volume. The ACF is fitted with
characteristic model to extract the particle dynamics (diffusion or flow) and density. (C) Different fluorescence imaging microscopy
modalities used to generate data that can be used for ICS analysis. (D) In ICS, a single image is correlated with itself to produce an ACF that
is fitted to a 2D Gaussian model for number density characterization. (E) In TICS, a single pixel temporal intensity fluctuation is characterized
by temporal ACF calculation and fit to obtain particle number density and dynamics. (F) STICS involves full spatiotemporal ACF to obtain a
CF that translates in temporal lags according to the dominant flow in the image data. The fitting at each temporal lag, with 2D Gaussian,
and extracting the peak position of CF allows for particle flow characterization.

A guide to correlation spectroscopies

Pandzic and Whan. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2019.000143 41

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-13



first ICS experiments (Fig 1C,D) were applied to
measure the aggregation and concentration of
membrane receptors (11–16) and with this new
capability came the need to characterize the
protein colocalization from dual-channel micro-
scope images, which, in turn, led to the
development of image cross-correlation spec-
troscopy (ICCS) (17–20). As these ICS tech-
niques were applied to more systems, it was
realized that some systems exhibited relatively
slow diffusion dynamics and required a differ-
ent approach, and a frame-to-frame temporal
correlation was established to allow paralleliza-
tion of FCS. This extension was named tempo-
ral ICS (TICS; Fig 1E) or (17, 18, 21).

The capacity of TICS to obtain a single pixels
temporal intensity fluctuation within a time
series was an exciting one, and it was not long
before a full spatiotemporal image correlation,
(STICS; Fig 1F) allowed for the accurate
measurement of molecular flow (22, 23),
protein cofluxing (24–27), organelle dynamics
(28, 29), and cellular migration (30, 31). These
few examples of applications are testaments to
the growth of the FFCS field and the capacity to
provide novel insight into molecular dynamics.

Herein, we describe the theoretic back-
ground of FFCS, with emphasis on fitting
models and determining the diffusion coeffi-
cient, molecular flow, and particle concentra-
tions. We introduce the simulation and analysis
scripts and proceed with exercises in FCS, ICS,
TICS, and STICS. We conclude with a brief
discussion inviting the readers to consult
further literature where some of the new and
specialized adaptations of FFCS approaches
that shine new light in fundamental and
applied sciences.

II. THEORY
The aim of this section is to introduce the

reader to some theoretic concepts related to
FFCS techniques and how the fluorescence
fluctuations measured from a single probing
volume (FCS) or multiple pixel fluctuations (ICS)
can be used to recover some useful information
about the system, such as molecular concen-
trations, diffusion coefficients, molecular fluxes,
and more. While it is highly recommended that

the reader consult some of the literature (1, 2,
9) to find out more about underlying develop-
ment of equations presented here, we will keep
the presentations at the introductory level.
Appendix A contains further developments
showing how the combination of Eqs. 1 and 2
lead to a free diffusion fit model. It is
fundamental that the reader grasps the origin
of some of the fitting models and how they link
to the system’s parameters, as well as modality
of spatiotemporal sampling. The basic idea
behind any FFCS technique is that particles
within a system undergo local fluctuations in
concentration above and below their average
constant value in space and time. These
fluctuations, which can be due to particle
diffusion, flow, or chemical reactions, are
observable if we use a sufficiently small
measurement volume, typically on the order
of a femtoliter. In the experimental realization
of the first FCS experiment, a beam of focused
light was used to excite a local subvolume in
which particles would fluoresce when within
the volume. As particles move in and out of
beam, they would produce fluorescence fluc-
tuations in time, which could be correlated to
obtain a characteristic autocorrelation function
(ACF) that characterizes this ensemble of the
particles. An important concept in FFCS is that
the system is in steady state, either equilibrium
or nonequilibrium, and that if one observes the
fluorescence fluctuations over long enough
experimental time, then the time average is
equivalent to the ensemble average of the
system, by the ergodicity principle. Let us
define the temporal average of the measure-
ment within a subvolume as hFi and let dFðtÞ
¼ FðtÞ � hFi be the fluctuation of fluorescence
at time t. A single fluctuation in time does not
tell us much about the ensemble of particles
producing it, but if we take those fluctuations
and correlate them in time (or space as in ICS),
we generate a fluorescence fluctuation ACF,
GðsÞ ¼ hdFðtÞdFðt þ sÞi. Here, symbols h. . .i
signify that averaging over a long time period,
much longer than the characteristic time of
single fluctuation produced by particle move-
ment. Now that we introduced G(s), it is valid to
ask how a fluorescence fluctuation in small
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observation volume, dV relates to the fluctua-
tion of particle concentration and ultimately to
the underlying dynamics of particles. First, let
us define the fluorescence observed from the
small observation volume by using some
system and microscope parameters: dFi(r, t) ¼
giI(r)ci(r, t)dV, where gi accounts for fluoro-
phore’s quantum efficiency and absorbance, I(r)

is the spatial distribution describing the extent
of observation volume, ci(r, t) is the concentra-
tion of ith dynamical species defined in space
and time. With this information, we can define
the relation between the fluorescence and
concentration fluctuation of the ith dynamical
species: dFiðtÞ ¼ gi

Rþ‘

�‘
IðrÞdciðr; tÞdr. Then, for

a system of M fluorescent dynamical species:

GðsÞ ¼
PM

i¼1

PM
j¼1hdFið0ÞdFjðtÞi

ð
PM

i¼1 hFiðtÞiÞ2
¼
PM

i¼1

PM
j¼1 gigj

Rþ‘

�‘
IðrÞIðr0Þhdciðr; 0Þdcjðr0; sÞidrdr0Rþ‘

�‘
IðrÞdr

PM
i¼1 gihcii

� �2
ð1Þ

where i and j are indexes for particle species i
and j. In Eq. 1, what is essential is that the left-
hand side, G(s) is directly proportional to the
density–density fluctuation of particles, hdciðr; 0Þ
dcjðr0; 0Þi within the observation subvolume. All
the other parts of that equation consider the
fluorophore’s quantum efficiency and absorp-
tion, observation volume spatial extent, and
denominator of the equation for normalization
purposes. The second piece of information we
need is to connect the density–density fluctua-
tions to the underlying system parameters, such
as particles diffusion coefficient or flowing speed,
as well as kinetic rates, in case the system
undergoes equilibrium chemical reaction. De-
pending on the dynamics and kinetics involved
in controlling the particle populations, we can
describe the concentration of M particles species
by using a system of convection–diffusion–
reaction partial differential equations:

]ciðr; tÞ
]t

¼ Dir2ciðr; tÞ � Vi
]ciðr; tÞ

]x

þ
XM

j¼1

Tijdcjðr; tÞ ð2Þ

What is important to grasp from Eq. 2 is that the
left-hand side expresses the time evolution of
particles concentration of ith species in time
within small system subvolume and how it
depends on various dynamics and kinetics, as
described on the right-hand side of the equation.
The first term on the right-hand side describes
the particles diffusion of species i, Di, the second
term describes the particles flow, Vi, and the final

term describes the changes in concentration, ci

of ith species due to a chemical reaction rate, Tij

influencing concentrations of other M-1 species,
dcj. Depending of what type of dynamics and
kinetics regulate the particles concentration in
the system, we can choose which components of
Eq. 2 are important and use in the fitting
equation model to describe the experimental
ACF G(s).

For instance, if one assumes that particles
undergo only diffusion and use only the first
terms of Eq. 2 and plug the solution to the
system of equations for M species, into Eq. 1,
then one can find expression for the ACF:

GðsÞ ¼ 1

px2
0

Pm
i¼1 hciiq2

i 3 1þ s
sDi

� ��1

PM
i¼1 hciiqi

� �2
ð3Þ

where qi labels the fluorophore brightness for
the dynamic species i. There are 2 fitting
parameters that one can extract from Eq. 3:
First is the average concentration of particles
sampling the observation volume, hcii, which is
inversely proportional to the amplitude G(0).
Second, the characteristic diffusion time, or the
average time taken by the particle to transit the
observation volume, sDi

¼ x2
0

�
4Di depends on

the observation volume beam lateral waist
radius, x0 and the diffusion coefficient of ith
population (Fig 1A,B).

Similarly, if one assumes that particle con-
centration fluctuates purely due to the flow,
then taking the second term of right-hand side
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in Eq. 2 and solving the system of equations,
followed by inserting the solution into Eq. 1
leads to a solution for ACF:

GðsÞ ¼ 1

px2
0

PM
i¼1 hciiq2

i 3 exp � s
svi

� �2
� �

PM
i¼1 hciiqi

� �2

ð4Þ
As in Eq. 3, the amplitude relates to the average
concentration of particles sampling the obser-
vation volume as they flow through. The
characteristic time for G(s) to decorrelate,
svi
¼ x0=Vi, which is defined as the average

time taken by the particle to transit the
observation volume, is linked to the observation
volume lateral radius and to the speed Vi that ith
species of particles use to sample the volume.

For the purpose of this article, we will not
cover any other models and invite the readers
to consult the literature for more details about
the possible models (e.g., advection–diffusion
and chemical reaction) and the solutions used
for fitting the FCS ACF.

Now, we turn our attention to a natural
extension of sampling the fluorescence fluctu-
ation not only in time, as is case in FCS, but also
in space. This was first implemented by ICS,
where the idea of ergodicity was applied and
the concept that in a stationary system, a
temporal average is equivalent to spatial
average of the ensemble. Therefore, in ICS, we
correlate the fluctuation of fluorescence signal
in pixel within an image, above and below
average image intensity. The correlation func-
tion (CF) is computed over spatial lags rather
than temporal lags as in FCS and gives rise to
information, such as the average particle
concentration per beam area (or per image).
The original transition from FCS to ICS occurred
with advent of modern LSCM, where the raster
beam is scanned across sample and at each
point of the sample fluorophores are excited
for a time, depending on the scanner speed,
and emit light that is then detected on a point
detector, such as photomultiplier tube or
avalanche photodiode. The effective observa-
tion volume in this scenario is a cross section
(or convolution) between the scanning beam

and the instrument point spread function (PSF)
that is defined by the wavelength of the light
used for imaging, as well as numeric aperture
of the lens used for imaging. Later, ICS and
different derived techniques were successfully
applied to other imaging modalities, such as
total internal reflection fluorescence microsco-
py that uses cameras (electron-multiplying
charge-coupled device or scientific comple-
mentary metal-oxide semiconductor) to create
the image. In that context, the observation
volume is effectively the PSF of microscope. In
other microscopy modalities, such as multipho-
ton excitation (2 photons, for instance), the
excitation volume is very compact so that it
effectively defines the observation volume.
Independent of how an image or image time
series is generated, we can write a general ICS
CF, equivalent to G(s) in FCS:

rabðn;g; sÞ

¼ hdFaðx; y; tÞdFbðx þ n; y þ g; t þ sÞi
hFaðx; y; tÞithFbðx; y; t þ sÞitþs

ð5Þ

where n, g, and s denote lags in x,y, and time,
respectively. Here, a and b denote the possibility
of having 2 different imaging channels, repre-
senting potentially images of 2 proteins that
interact in the system. For simplicity, we will
consider only the single-channel imaging in this
article but point the reader to the useful
literature, later in section VII, where ICCS (and
equivalently FCCS) are used to study protein
colocalization and codynamics. In the current
work, we present the fitting models of ICS for
scenarios of ICS in context of single-image
autocorrelation for extraction of particle number
density within the single microscopy image, TICS
for recovery of particle density and dynamical
parameters, such as the diffusion coefficient and
speed, and finally, STICS for recovery of particle
flow from the image time series.

If we ignore the time component and
correlate an image with itself (a ¼ b), then Eq.
5, in analogy to development with Eqs. 1 and 2,
but this time assuming no dynamics, the
integral in Eq. 1 will be performed in space
over a Gaussian excitation volume, leading to
an expression of the ICS CF (see Appendix A for
an example of derivation):
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rðn;gÞ ¼ rð0; 0Þ exp � n2 þ g2

x2
0

� �
þ r‘ ð6Þ

In this case, the amplitude of the CF, r(0, 0) is
inversely proportional to the average number of
particles that visit, by diffusion or flow, the
observation volume of the imaging microscope;
r‘ is a fit parameter characterizing the offset of
CF at infinity, usually equal to 0 if properly
normalized (Fig 1C,D). If on the other hand, we
correlate the intensity of each pixel with itself in
time, ignoring the spatial lags, n and g, we
obtain the equivalent of parallel FCS, but where
each pixel from image time series is considered
independently. This approach is known as TICS.
In this case, depending of the underlying
mechanism of particle movement and conver-
sion (see Eq. 2), we will obtain different model
functions for TICS fitting. For instance, if we have
only diffusing particles, we will have the
following model for fitting a TICS CF:

rð0; 0; sÞ ¼ rð0; 0; 0Þ 1þ s
sD

� ��1

þ r‘ ð7Þ

where the fitting parameter sD ¼ x2
0

�
4D is

related to the diffusion coefficient and the
observation volume lateral radius and r‘ is
defined in the same way as described previ-
ously. In the imaging sampling context, x0 is
the lateral radius of the PSF. If the particles are
purely flowing, the TICS CF will take the
following form:

rð0; 0; sÞ ¼ rð0; 0; 0Þ exp � s
sf

� �2
 !

þ r‘

ð8Þ
where the characteristic time of CF decay is
related to the particle speed in the following
way: vf ¼ x0=sf . It is logical to see that if we
have a system where 2 populations of particles
coexist, where 1 diffuses purely and 1 flows
with finite speed, we will have an expression for
TICS CF that will be a sum of Eqs. 7 and 8, with
amplitudes of each component inversely pro-
portional to the particle species density (Fig
1E). Finally, if we consider the correlation of
fluorescence fluctuations of every pixel in time
series with every other pixel (i.e., applying the

full spatiotemporal correlation as in Eq. 5), we
will obtain STICS. The general expression for
STICS CF will read

rðn;g; sÞ

¼ rð0; 0; sÞ exp �ðn� xðsÞÞ2 þ ðg� yðsÞÞ2

x2
0ðsÞ

( )

þ r‘ðsÞ
ð9Þ

where x(s) and y(s) denote the x and y
coordinates of the peak of the CF at lag time
s. Extracting the position of CF peak versus s
allows us to deduce the velocity of particles
within the sampled field of view (FOV). Indeed,
the slope of x(s) versus s gives the velocity
along x direction, and a similar slope for the y
coordinate gives the velocity along y axis (Fig
1F). On the other hand, if only diffusion is
present, we do not expect the x(s) and y(s) to
change over time. Therefore, this expression
would reduce for single population diffusion to
following expression:

rðn;g; sÞ ¼ rð0; 0; sÞ exp � n2 þ g2

x2
0ðsÞ

� �
þ r‘ðsÞ

ð10Þ
and n2 þ g2 ¼ j~rj2 ¼ r2 is the radial spatial lag
squared and the fitting parameter r(0, 0, s) is
inversely proportional to the number density of
particles in the system. The other fitting
parameter, x2

0ðsÞ can be written as

x2
0ðsÞ ¼ 4Dsþ x2

0 ð11Þ
and x0 is the PSF lateral e�2 radius. This last
expression is the equivalent of a mean square
displacement (MSD), and STICS has been used
in some contexts to characterize diffusion by
using the CF radius squared (x2

0ðsÞ) change
versus temporal lag s.

III. PRELIMINARY
CONSIDERATIONS

The Supplemental MATLAB scripts for the
simulator and analyzer are provided in the
Supplemental Material. Additionally, you can
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find a copy of most up-to-date version of
scripts at GitHub (https://github.com/ElvPan/
Scripts-for-Biophysicist). To run the simulator
and analysis scripts, the user will need to have
MATLAB installed (preferably the latest version)
with image processing, signal processing, and
statistical toolboxes (see Appendix B for system
requirements). For those that are unfamiliar
with the MATLAB interface, we will start by
introducing some essential parts and instruct
how to add the scripts to the path. Please refer
to the Figure 2 for details on how to add a
folder with subfolders to the MATLAB path
such that simulation and analysis scripts run
properly. First, note that the current directory is
displayed with green ellipse labeled as 1. Make
sure that this is the directory of the folder
containing your simulation and analysis scripts
with subfolders as shown in green ellipse 2 and
marked as the current folder. This is the
directory you obtain after you extract the folder
containing the scripts you will download with
this article, named icsmatlab forcorrworkshop.

Make sure you unzip the folder. Also, note that
green ellipse 3 labels the command window,
where the user can run lines of code or call
execution of a script. Also, green ellipse 4 labels
workspace, where the user can find all the
variables generated throughout the simulations
and analysis performed. To add the folder for
simulation and analysis to MATLAB path, please
click on set path as indicated by red ellipse 1
(Fig 2). It will open the dialogue prompting to
select add with subfolders button, as shown in
red ellipse 2. After this button is clicked, please
select the main folder (red ellipse 3), containing
all the subfolders and scripts used in this article
(icsmatlab forcorrworkshop). Once you see that
all the subfolders were added to the list of
folders in the path, click on save, as shown in
red ellipse 4. Now that the scripts are added to
the MATLAB path, you are ready to proceed
with simulating data and analyzing them by
using one of the FFCS techniques. Enjoy
simulating and analyzing!

Fig 2. MATLAB interface. Setting the simulator and analysis scripts folder into the MATLAB path (red circles): (1) Set the path button used to
open the dialogue with buttons (2) and (4); (2) add with subfolders button used to indicate the location of folder to be added to the path;
(3) select folder is used to define main folder containing all the scripts and subfolders used in simulations and analysis.
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IV. SIMULATOR
This section details the parameters that can

be set by the user to simulate an image series,
such as fluorescence microscope data or
simulating the intensity fluctuation time series,
as obtained in FCS experiments. The main
function used for simulating datasets is Simu-
latorImageSeries.m, which can be found in the
basic package inside the main folder icsmatlab
forcorrworkshop. Beside the simulator script,
this folder contains other subfolders containing
scripts that can calculate basic modes of ICS or
FCS and fit CFs, which will be detailed in later
sections of this guide. To run the simulator, you
will need to open a MATLAB session and open
the script SimulatorImageSeries.m, followed by
going to the editor tab of MATLAB and
pressing the run button (or pause when
activated). This action will open the simulator
menu, as shown in the red circle in Figure 3 A.
The user can set the following parameters in
the simulator:

(a) Number of dynamical species: The default
number of particle species is 1. In a
complex cellular environment, more than
1 population of particles can sample an
FOV, as will be demonstrated in few later
examples.

(b) Image size in x and y: These 2 parameters
define how big the images will be in pixels.

(c) Number of images: number of total images
in the time series simulated.

(d) The pixelSize: the size of a pixel in
micrometers.

(e) The timeFrame: the time delay between
frames in seconds.

(f ) PSF type: This defines if the PSF is
Gaussian (g) or airy (a). For most of the
wide field and confocal microscopes,
observed PSF can be approximated by 3-
dimensional (3D) Gaussian function, but
the more exact function describing the
emission profile is an airy function, hence,
flexibility in choice.

(g) Lateral PSF e�2 radius (also known as x0):
This specifies the radius of PSF, in microm-
eters, for the lateral (xy) plane.

(h) Axial PSF e�2 radius (also known as xz):
This specifies the radius of PSF, in micro-
meters, for axial (z) plane. Leaving this at 0
ensures that particle dynamics occur in a 2-
dimensional (2D) plane, such as the cell
membrane, in which case the convolution
with axial part of PSF is not necessary.
Otherwise, the nonzero value needs to be
entered if 3D dynamics are occurring (i.e.
nonzero component of diffusion or flow in
axial direction), but imaging still occurs in
one plane. Also, set to the nonzero value if
wanting to perform FCS simulations.

(i) Image bit depth: This specifies if output
data is converted to 8, 10, 12, or 16 bits.

( j) Detector counting noise: This parameter (1
to 20) simulates the detector counting
noise by using Poissonian-distributed noise
(for image series simulations only).

(k) Background noise: This parameter (be-
tween 0 and 1) simulates the Gaussian
background, where bigger values result in
noisier data (for image series simulations
only).

(l) Bleaching: This parameter specifies what
kind of photophysics effect the user wants
to impose on fluorophores. The default is
none and implies no photophysics will be
affecting fluorophores. Mono will result in
monoexponential bleaching of fluoro-
phores. Quantum dots (QD) will result in
the power law blinking behavior of fluo-
rophores, such as observed in QD.

(m) FCS: If the user wants to perform FCS
simulation, then y should be entered.
Otherwise, the default n will ensure image
series with previously mentioned specifi-
cations is simulated. If the user decides to
do FCS simulation, the answer here should
be y and ensure that axial PSF e�2 radius is
set to a nonzero value (usually ~1 lm or 2
to 3 times the size of xy PSF radius).

(n) The mask size: This parameter, defaulted to
0 up until section VI.G, generates a central
area mimicking cell, while the outside of
the mask represents the space outside of a
cell. If set to 0.5, it generates a square mask
with edges half the size of full frame.
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Fig 3. Simulator script. (A) User-defined input parameters for simulation to run. (B) Submenu for input parameters specific to each dynamic
population simulated. (C) Example of simulated image series visualized by using the stack viewer (sv.m).
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Once these input parameters are defined, the
user can click on the OK button. This will open a
new dialogue (Fig 3B), prompting the user to
enter specific parameters for each particle
population. If in the previous menu, the user
entered several dynamical species to be simu-
lated larger than 1, the same menu will open
for every population. This submenu ensures
that every dynamical population can be set to
have different dynamics, quantum yield (bright-
ness), and photophysics, such as the realistic
scenario in which the same protein can be in
several different cellular compartments and
dynamical states.

The items in the submenu are the following:

(a) Particles density: defines the density of
each particle population, in particles per
micrometer squared.

(b) Bleaching decay: Depending on the bleach-
ing value used in the previous menu, the
bleaching decay numeric value will be the
decay constant of the monoexponential
bleaching. If on the other hand, the value in
the previous menu was set to QD, the
bleaching decay should be a 2-value array
specifying the ON and OFF time exponents
of the QD blinking distribution.

(c) Quantum yield (counts per pixel): This
parameter specifies the quantum yield of
a fluorophore. Default value is set to 1. If
the user wants to simulate 1 of the
populations as a tetramer, then input 4 at
this parameter.

(d) Diffusion coefficient: parameter defining
the diffusion coefficient of the population
in micrometer per second.

(e) Flows X,Y and Z: These parameters define
the components of flow of the population
in the x, y, and z direction, respectively, in
units of micrometer per second squared.

Once the simulation parameters are defined
for all populations, the code will run and
output a window showing the simulated data
(Figure 3C). If an image time series was
simulated, the series viewer (sv) can be used
to play the image time series. Once visualized,
sv can be closed, and you can proceed with
analysis as outlined in the following sections.

V. FCS simulations and analysis
This section shows how the simulator can be

used to generate an intensity time sequence
similar to the one obtained in FCS experiments.
This simulator does not explicitly consider more
complex scenarios in FCS experiments, where
the various fluorophores’ photokinetics are
involved, nor does it allow for realistic control
of detector gain and other detection parame-
ters. Nevertheless, it allows the user to perform
some basic FCS simulation and to appreciate
how the variability in particle population
density and dynamics parameters can affect
the ACF in FCS. To generate a FCS sequence,
run the SimulatorImageSeries.m script and
make sure to input a nonzero value of PSF
axial radius (usually 1 to 1.5 lm), the FCS field
to y and number of images in series to 10,000
at least (see Fig 3). Once the user clicks the OK
button, a menu will pop up for each population
of particles, as shown in Figure 3B. Choose the
values you want to simulate for each popula-
tion. After the simulator has generated a
sequence, it will produce a plot of intensities
versus time as shown in Figure 4A. Feel free to
use the zoom in tool on MATLAB figure
window to zoom in intensity sequence and
see how the intensity fluctuations differ with
varying simulation input parameters (Fig 4B).

A. Running FCS or ICS analysis
To perform FCS or ICS analysis, run BasicIC-

SAnalysis.m inside icsmatlab forcorrworkshop
matlab folder by clicking on run (shown as
pause in Fig 5A) button. This will open the
dialogue, as shown in Figure 5A.

(a) ICS for hNi: Run spatial ICS analysis on
single images (used to extract the number
density of particles).

(b) TICS for speed and diffusion: Run temporal
fluctuation correlation in single pixels of
image time series (used to extract number
densities, diffusion coefficient, or speed of
particles).

(c) STICS for flow: Run spatiotemporal correla-
tion on full time series for flow analysis.

(d) The FCS: used to extract parameters, such
as number densities, diffusion coefficients,
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and speed of particles from FCS experi-
ments.

B. FCS simulation case 1: free
diffusion in 3D

FCS data simulated and shown in Figure 4
was produced by using D ¼ 0.03 lm2 s�1,
density ¼ 1.5 particles lm�2, and axial PSF
radius of 1.2 lm. To perform FCS analysis, open
the script BasicICSAnalysis.m. It will open the
menu dialogue, prompting the user to select
one of the analysis methods, as shown in Figure
5A. Selecting FCS and pressing the close button
will run the calculation of FCS ACF. The
calculated ACF is plotted (Fig 5B), and a new
menu will appear, prompting the user to select
the fitting model (Fig 5C). The fitting model
choices are the following:

(a) The 1 component diffusion: This model
assumes that data is sampled from a single
freely diffusing particle population. It as-
sumes that motion happens in 2D.

(b) The 1 component flow: This model assumes
that data is sampled from a single actively
transported particle population. It assumes
that motion happens in 2D.

(c) Sum of 1 component diffusing and 1
component flowing: This model assumes

that data is sampled from a 2 independent
particle population, 1 actively transported
and 1 diffusing. It assumes that motion
happens in 2D.

(d) Single component 3D diffusion: This model
assumes that data was collected from a
sample containing 1 dominant diffusing
population in 3D.

For the simulated FCS data in Figure 4, we
selected 1 component diffusion and ran it by
pressing the close button. A new window (Fig
5D) will appear, prompting the user to enter
some of the microscope related parameters,
which can either be coming from simulated
data (as in the case considered) or from real
experimental data. Make sure to enter the
correct values, such as radial and axial PSF radii
and sampling time used in simulation, as well
as determine the maximum temporal lag for
which the ACF should be calculated, usually
about a 10th of the total experiment time, and
press OK.

We will use the Eq. 3 here to fit the FCS ACF.
The fitted results will be displayed as in Figure
6, with raw data displayed and fit (red line)
superimposed. Also, residuals of the fit are
shown for a visual inspection of the goodness
of fit and to help the user determine if the
model used fit the data well. Moreover, the user

Fig 4. The intensity sequence output of FCS simulation. The data was generated using D ¼ 0.03 lm2 s�1, density ¼ 1.5 particles per
micrometer squared, and axial PSF radius of 1.2 lm.
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Fig 5. The user prompt for analysis of FCS or ICS series. (A) Prompt dialogue for analysis. (B) Example of FCS ACF from the simulated
example in Figure 4. (C) Prompt for choice of ACF fitting method. (D) Prompt for FCS analysis input parameters.
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will be able to see the number density hNi and
diffusion coefficient recovered from the fitted
parameters (values displayed in red to the right
of fitted curve).

Q1 for the learner
According to your observation from the 2D

diffusion fit model (Fig 6B), does this model
provide a good fit the ACF? Does it recover the set
simulation parameters for hNi and D? Now,
rerunning BasicICSAnalysis.m, with FCS mode
and select the single component 3D diffusion as a
fitting model, should produce the graph as
shown in Figure 6C. Are recovered parameters
of hNi and D closer to the set simulation values?
Try fitting the other available fitting models for
FCS and see how they compare. Can you think of
other metrics to assess the goodness of fit and,
ultimately, verify which model best fits your data?

See Appendix C for the answers and
discussion.

C. FCS simulation case 2: 1 flowing
population

For this exercise, we simulate FCS data with
particles flowing in 3D. Make sure to run
SimulatorImageSeries.m and select FCS to
simulate FCS data and input simulation param-
eters as in previous example, but this time
input flow values as shown in Figure 7A.

Run BasicICSAnalysis.m and try fitting 1
component diffusion in the 2D model (see Eq.
4). It will produce a graph as shown in Figure
7B.

Q2 for the learner
Does the model fit the data well? How about

the recovered parameters? Now, try fitting 1
component flow model. It should produce the
plot in Figure 7C. Which model fits ACF best and
why? How do recovered values for flow speed
and particle number density compare to the
values set in FCS simulation?

D. FCS simulation case 3: 1
component diffusing and 1 flowing

Repeat the simulation steps from previous
sections (Fig 8A), but this time, select 2
dynamical populations. For a variation, change
the time step from 1 to 0.1 s and simulate
50,000 steps rather than 10,000. Ensure that
you adjust the axial PSF radius and input y at
the FCS input. Adjust densities and dynamic
parameters of diffusing and flowing popula-
tions, as shown in Figure 8B,C. Once the FCS
data is simulated and intensity trace graph like
the one shown in Figure 4, is generated, close it
and run BasicICSAnalysis.m, with the FCS mode.
The ACF will pop up with input dialogue for
selection of the fitting model, as shown in
Figure 8D. Select sum of 1 component diffusing

Fig 6. Fitting 3D diffusion simulated FCS data ACF with 3 different models. (A) Fitting single-component flow model, (B) fitting 2D diffusion
model, and (C) fitting 3D diffusion model.
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and 1 component flowing for fitting model
(combination of Eqs. 3 and 4) and click on the
close button (Fig 8D inset). This will generate
the fitted results, as shown in Figure 8E.

Q3 for the learner
Do the fitted results make sense compared

with set inputs for simulations? What if you tried
different fitting models presented in previous
sections? Moreover, how would you set up the
simulation to see decays from 3 populations, say
2 diffusing and 1 flowing. What should be total
time of acquisition? Considering their respective
average transit time through the PSF and the PSF
size you would use, what should be the total
number of time points of acquisition?

VI. ICS SIMULATIONS AND
ANALYSIS

In the first section, we saw how to generate a
time series by using SimulatorImageSeries.m
script. Using the same simulation settings as
detailed in Figure 3A,B, generate the image
series, shown in Figure 3C. This simulation
generates an immobile population. Open the
BasicICSAnalysis.m script and run it, selecting
the ICS for hNi to run ICS analysis. It will pop
open a menu, as shown in Figure 9A, prompt-
ing the user to enter the pixel size (in
micrometers) of which image of the series to
analyze, if the average ICS CF should be fitted

instead of single image CF, and if the (0,0)
spatial lag should be ignored in fitting. In the
following examples, a few cases of ICS simula-
tions are explored.

A. ICS simulation case 1: ICS for
recovery of hNi

With parameters set as in Figure 3A,B,
generate an image time series. In the analysis
menu for ICS, enter values, as shown in Figure
9A. In this case, we fit the ICS ACF with Eq. 6
and use the amplitude to extract hNi. Consid-
ering that the simulation used 3 particles per
micrometer squared and the PSF lateral radius
of 0.4 lm (area of ~0.5 lm2), how do recovered
values compare with input? Now try the same
analysis, but this time enter y in the menu, next
to the fit average. You will likely not see any
difference because the population is immobile;
hence, all the images in the time series are
identical. Therefore, the average ACF from ICS
will be identical to the ACF from a single image.
Try simulating a time series where you add
some motion to the particles such as diffusion.
Repeat the ICS analysis but on a single plane
ACF. You should have results similar to the one
shown in Figure 9D.

Q4 for the learner
What if now you rerun the ICS analysis on the

same dataset, but this time, choose to take the
temporal average of the ICS ACF and fit it with

Fig 7. Simulating 3D particle flow FCS data and calculating and fitting ACF with 2 different models. (A) Inputs for FCS simulation of flow. (B)
The 2D diffusion model fit. (C) The 3D flow model fit.

A guide to correlation spectroscopies

Pandzic and Whan. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2019.000143 53

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-13



the 2D Gaussian (Fig 9E). Will the fit improve
compared with the fit of an ACF from a single
image plane (Fig 9F). Any improvement in output
values for the density of particles compared with
the set values in simulation?

B. ICS simulation case 2: TICS for
recovery of particles diffusion
coefficient

In this section, we explore how to use TICS
(i.e., temporal correlation of individual pixels in
a time series) to recover dynamics of particles.
Generate image time series by using settings as

shown in Figure 3A,B, but set diffusion coeffi-

cient and density of the populations to D¼0.01

lm2 s�1 and 3 particles per micrometer

squared, respectively. Run BasicICSAnalysis.m,

selecting TICS for speed and diffusion, as

shown in Figure 10A. This is similar to running

FCS analysis on intensity sequence, as detailed

in section V, case 1, but here, each pixel’s

intensity of the image series fluctuates due to

underlying particle movement. TICS is a bit of a

parallelized FCS for slow dynamics, as captured

on imaging frame rates.

Fig 8. (A) Input dialogues for simulating a diffusing and a flowing population in FCS experiment. (B) Input parameters for diffusing
population. (C) Input parameters for flowing population. (D) ACF for simulated sum of flow and diffusion. Inset: input parameters for fitting
model. (E) Results of fitting sum of flow and diffusion components.
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The TICS analysis will be applied to the image
time series, and a spatial pixel average CF will
be displayed on the screen, as shown in Figure
10B. Moreover, a dialogue menu will open,
prompting the user to pick a model to fit the CF
(see Eq. 7). Select 1 component diffusion and
press the close button to proceed. Another

menu will open prompting for frame time(s),
radial and axial e�2 radii of PSF, and maximum
temporal lag (s) to be considered in fitting.
Make sure that input parameters reflect what
you used to simulate the data, or in case of
experimental data use, the acquisition param-
eters used to acquire image series. For now,

Fig 9. ICS analysis for recovery of number density of particles. (A) ICS input dialog for analyzing a single image from an image series of
immobile particle population. (B) Raw and fitted CF from ICS analysis for a single frame of a simulated immobile particle population. (C) ICS
input dialog for analyzing a single image from an image series of freely diffusing particle population. (D) Raw and fitted CF from ICS analysis
for a single frame of a simulated freely diffusing particle population. (E) ICS input dialog for analyzing the temporal average of the ICS ACF
from an image series of diffusing particle population. (F) Raw and fitted ACF from ICS analysis for the temporal average of the ICS ACF from
an image series of simulated diffusing particle population.
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you can ignore (set to 0) axial radius of PSF, as
we simulated the 2D diffusion in this example.
Click OK, and it will proceed with TICS analysis
and fitting. Figure 10D shows results of fitting a
single 2D diffusion model to the TICS CF.

Q5 for the learner
Do the recovered parameters compare with set

density of particles and diffusion coefficient? Try
running the TICS analysis again, but this time,
select 1 component flow. It should produce the
plot, as in Figure 10C. Compare results.

C. ICS simulation case 3: TICS for
recovery of particles speed

In this section, we run the SimulatorImage-
Series.m to generate the flowing particles
image series. After the first menu, as shown in
Figure 3A, you will be prompted to enter the
particle population specific parameters, as
shown in Figure 11A.

Try fitting a free diffusion model to the data
(Fig 11C). Does it fit well the data? Fitting the
2D flow model (see Eq. 8) for TICS leads to a
more accurate estimate of parameters used to
simulate the data (Fig 11D). More importantly,
this model fits more accurately the ACF.

D. ICS simulation case 4: STICS for
recovery of particles flow

As already demonstrated, TICS analysis can
recover the speed of flowing particles within a
considered region of interest but cannot
distinguish in which direction flow occurs. Full
STICS can be used to pick both magnitude and
direction of flow. Rerun the analysis script on
data simulated in previous section, but this
time, select STICS for flow when prompted in
the analysis menu (Fig 12A). This will open a
menu for STICS (Fig 12B) input parameters. For
now, leave the immobile filtering parameter at
n, as we do not have any immobile particles in
the image series simulated. Run the code by
clicking OK. The fitting model used here is
described by Eq. 9.

This will open the window containing the
STICS CF that can be played (stack viewer).
Please wait until the STICS CF fitting is
complete and results are displayed, as shown
in Figure 12F. The STICS CF peak (Fig 12C–E)
translates at the same rate as the molecules
simulated in the time series. Detecting the peak
of CF at every temporal lag s and fitting the
position in both x and y directions versus s
leads to full flow information (vx,vy).

Fig 10. Running TICS menu from BasicICSAnalysis.m to analyze simulated image time series. (A) Select TICS from prompt dialogue for
analysis and (B) TICS ACF function and prompt for fitting model. (C) Fitting results for flow model fitted on the TICS ACF for the free
diffusion simulated data. (D) Fitting results for diffusion model fitted on the TICS ACF for the free diffusion simulated data.
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Fig 11. The 2D flow image series simulation and TICS analysis. (A) Input parameters for 2D flow simulation. (B) TICS ACF for simulated 2D
flow image series and prompt for fitting model (inset). (C) Single component diffusion fitted to TICS ACF of simulated 2D flow population.
(D) Single component flow fitted to TICS ACF of simulated 2D flow population time series.

Fig 12. Input prompt for choice of analysis method, STICS input parameters, and results from STICS analysis of simulated flow example. (A)
Prompt for selecting analysis method. (B) STICS input dialog. (C), (D), and (E) STICS CF for temporal lags s¼ 0, 9, and 19 s. (F) Extracting the
position of CF peak at different temporal lags, s and fitting linearly versus s allows for recovery of velocities (slopes of fit) along both x and
y directions.
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Q6 for the learner
Do the values recovered compare with the set

parameters in the simulation? If you had multiple
populations flowing, what do you expect STICS
CF to look like?

E. ICS simulation case 5: STICS for
recovery of particles flow in
presence of immobile particle
population

Rerun the simulation of image series, but in
this scenario, use 2 particle populations and
specifications, as shown in Figure 13A. When
prompted to input parameters for each popu-
lation, make the first population flow a defined
amount, as in Figure 13B, while making the
second population immobile (Fig 13C). This will
generate STICS analysis results as shown in
Figure 13F. Obviously, extracted flow is biased
because the immobile population peak at the
origin of CF (Fig 13F) affects the fitting and
recovery of the flowing peak. To remedy this
problem, we can filter the immobile contribu-
tion from the image time series by applying the
immobile filter. It can be done by subtracting
the temporal average image of the time series
from each frame or by taking the temporal
Fourier transform of the time series and setting
the lowest (slowest) spectral component am-
plitude to zero, with Fourier inverting the
resulting time sequence. If we apply the
immobile filter in this way, by setting immobile
filtering parameter at y in the menu shown in
Figure 13E, we will remove the immobile
population from time series and effectively
recover the right flow from STICS analysis of the
immobile filtered image series, as shown in
Figure 13G.

F. ICS simulation case 6: STICS for
recovery of particles flow for
simultaneously flowing and
diffusing particles

Set up another simulation where you simu-
late a single population of particles by using
settings shown in Figure 14A. When prompted
to define the dynamic properties of the particle
population, enter values of diffusion and flow,

as shown in Figure 14B. This will generate a
time series in which particles simultaneously
flow and diffuse. Perform STICS analysis (Fig
14C) and examine the results (Fig 14D).

Q7 for the learner
What are characteristics of the STICS CF in this

case? Did the linear fit of the CF position versus s
produce accurate estimate of flow in both the x
and y directions? What happens with CF width as
s increases? Can you think how would this
information be useful? What dynamic parameter
would we be able to recover from it?

G. ICS simulation case 7: number
density recovery in the presence of
background noise

In this section, we simulate data that
represents common experimental scenarios,
such as the one in which background noise is
present in the image data. The noise in the data
can originate from different components of
samples, such as the autofluorescence from the
cell culture medium, cells aromatic residues,
and nonspecific binding of dyes to the culture
dish coverslips. Even the instrument compo-
nents such as dirty filters or other optical
components can give rise to noise. More
commonly, detectors being electronic devices
that generate heat and with it, a significant
amount of background, called Gaussian noise,
which may be detected in the image. This noise
is normally distributed and additive in nature.
There are other types of noises, such as salt-
and-pepper noise, which originates from ana-
log-to-digital image conversion and can be
somewhat corrected by median filtering. Final-
ly, the inherent nature of statistical quantum
fluctuations and variability in emitted photons
from different parts of sample will result in so-
called shot noise. This noise is characterized by
being proportional to the square root of the
image intensity and, as such, is Poissonian in
nature. Shot noise is embedded in simulation
parameter called counting noise.

Herein, we simulate the effect of background
or Gaussian noise and demonstrate how it can
be corrected in ICS analysis. Please proceed
with simulation, as shown in Fig 15A, which is
basically the same as section VI.B, except this
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time, change the ‘‘Gaussian background noise’’
parameter to 0.2. At this point, leave ‘‘mask
size’’ parameter at 0. When prompted for
dynamical parameters, just change the diffu-
sion coefficient to 0.01 lm2 s�1, as in section
VI.B. This will generate an image time series
that will be opened in the stack viewer, shown

in Figure 15D. As you can observe, having the
Gaussian background noise set at 0.2 produces
a noisy time series with a signal-to-noise ratio
of 1=0:2 ¼ 5. At that signal-to-noise ratio, we
can still perceive the particle movement. Apply
ICS as shown in the prompt in Figure 15B. The
data is shown in Figure 15E. The raw CF (left)

Fig 13. Input dialogues for simulating 2 flowing populations in ICS experiment. (A) Inputs for image series simulation of 2 flowing
populations. (B) Input parameters for flow population 1. (C) Input parameters for flow population 2. (D) Prompts and (F) results for STICS
analysis of a flowing and an immobile particle population simulated data. (E) Prompts and (G) results for STICS analysis of a flowing and an
immobile particle population simulated data and postimmobile filtering of image series.
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has a spike at G(0,0) superimposed on a regular
Gaussian-like ICS peak. This is a signature of
noise in image data and how it affects ICS CF.
Because noise does not correlate over larger
than single pixel distance, the larger than (0,0)
spatial lag will be less affected by noise. When
the average CF is fitted, but including the G(0,0)
value, we clearly do not have a good fit as
shown in center panel of Figure 15E. The
recovered value of particle density 15 per
micrometer squared is 5 times the set value. If
on the other hand. we rerun analysis, but this
time, select to exclude G(0,0) in fitting (Fig 15C),
we obtain better fit to ICS CF, as shown in
Figure 15E on the right panel. Still, the
recovered value of number density is far from
set value. The problem here is that our data is
corrupted with Gaussian noise. The simulated
images (Fig 15D) would be the equivalent of
imaging a square area inside a cell surface. This
way, we do not have an external to the cell area
reference of how bad the Background noise is.

If we resimulate data, setting the mask size
parameter to 0.5 as in Figure 15A, it will
produce the dataset similar to the one shown
in Figure 15F. In this case, we generated a
celllike area mimicked by an inner square and
an outer area that simulates outside of the cell
area. In this data, it is now clear how much

background noise adds to the images, even in
the parts of the images where there should be
no signal. How do we tackle the background
noise in ICS analysis? The underlying script
takes the average intensity outside of the ‘‘cell’’
area and subtracts this value from the pixels in
the cell area. The corrected pixels from the cell
area is then analyzed with ICS, and the resulting
CF is shown on left in Figure 15G. Whether we
fit with G(0,0) (Fig 15G, middle panel) or
without (Fig 15G, right panel), the number
density recovered is drastically improved.

Q8 for the learner
If you were to perform the same simulations

(with or without cell mask) and apply TICS for
diffusion and flow recovery, how would diffusion
coefficient recovered compare with set value of
0.01 lm2 s�1? Does the correction for background
noise improve the measured value of D? When
applying TICS, set the maximum s from 20 to 100
to increase number of s values and bias the fit
toward larger temporal lags.

H. ICS simulation case 8: diffusion
coefficient recovery in presence of
fluorophores photobleaching

In this section, we will demonstrate how
photobleaching, which is one of the funda-
mental properties of fluorescent labels, such as

Fig 14. Input dialogues for simulating simultaneously flowing and diffusing population in ICS experiment. (A) Inputs for image series
simulation. (B) Input parameters for particles dynamics specifications 1. (C) Prompts and (D) results for STICS analysis of a simultaneously
flowing and diffusing particle population simulated data.
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dyes, can lead to bias in measured parameters
from TICS, such as the number density. Indeed,
to generate image data, we need to expose the
fluorophores, which tag proteins of interest to
the source of light, a fluorescent lamp or a laser
light. In either case, increasing the intensity of
light source increases the amount of fluoro-
phores excited and also number of cycles of
excitation–emission, which results in an overall

amplified signal. This is, of course, the beneficial
side of increasing the light source intensity.
Unfortunately, there are negative aspects of
this experimental control, beside potential
phototoxicity and cell death. One of them is
that the fluorescent dyes undergo an irrevers-
ible conversion to a dark state. In other words,
fluorophores turn off and remain off for the
time longer than the experimental setting. This

Fig 15. Input dialogues for simulating a diffusing population in ICS experiment in presence of background noise. (A) Inputs for image series
simulation in which the background noise parameter is set to a nonzero value of 0.2 (to red rectangle). For data shown in (F) and (G), we
set the mask parameter also to a nonzero value, 0.5 in this example (second red rectangle). (B) Input parameters for ICS analysis to apply ICS
to an average CF and to include the G(0,0) value in the fit. (C) Input parameters for ICS but here setting the G(0,0) value to y, to exclude it
from the fit. (D) Frames 1, 10, 20, and 30 of time series simulated. This series is identical to section VI.B, except that here we added
background noise, of 0.2, to the image series. (E) Raw average CF (left), fitted with (middle), and without (right) G(0,0) point included. Red
text displays summary of recovered parameters from the fit. (F) Frames 1, 10, 20, and 30 of time series simulated with and active (inner
square) and a background (outside of the square) areas. This series mimics situation where an active area could be pixels within a cell and
background area contain pixels outside of cells. (G) ICS results for data simulated as shown in (F). Left, center, and right represent the
average CD within active area, postfitting, including G(0,0) point and excluding G(0,0) in the fit.
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has an effect on both the number densities
measured, as well as dynamics from ICS and
TICS. We will explore how in the example that
follows.

Let us simulate the data as we did in section
VI.B, but this time, set the bleaching to mono,
which will add the photobleaching to the
image series, in a monoexponential decay

fashion (Fig 16A). When specifying the particle
population parameters, use the settings as
shown in Figure 16B, making the decay rate
of bleaching equal to 0.01. This will generate an
image time series that will show a decrease of
number of visible particles in time, as described
by set rate (Fig 16C). If we were to run TICS
analysis on this dataset and then apply a single

Fig 16. Input dialogues for simulating a diffusing population in ICS experiment in presence of photobleaching. (A) Inputs for image series
simulation in which the bleaching parameter is set to mono (red rectangle). For data shown in (F) and (G), we set the mask parameter also
to a nonzero value, 0.5 in this example (second red rectangle). (B) Prompt for particle population simulation. Set the bleaching decay
constant to 0.01 s�1 (red rectangle). (C) Frames 1, 50, and 100 of time series simulated. This series is identical to section VI.B, except that
here we have a photobleaching of particles at rate of 0.01 s�1 in the image series. (D) TICS ACF for data in (C). Circle showing the calculated
ACF and red line showing the fit to the 1 component diffusion in 2D. Red text displays the fitted parameters, number density, and diffusion
coefficient. (E) Frames 1, 50, and 100 of time series simulated. This series is identical to section VI.B, except that here we have a
photobleaching of particles at rate of 0.05 s�1 in the image series. (D) TICS ACF for data in (E). Circle showing the calculated ACF and red line
showing the fit to the 1 component diffusion in 2D. Red text displays the fitted parameters, number density, and diffusion coefficient.
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component diffusion fit, because that is what
we know we simulated, we will generate fit as
shown in Figure 16D. Clearly the number
density recovered lower than the set value of
3 particles per micrometer squared, as one
would expect. On the other hand, there are
enough particles in frames that still produce
the characteristic temporal fluctuations of the
order sD ¼ x2

0

�
4D ¼ 4 seconds, which coher-

ently decorrelate and recover the expected
diffusion coefficient. If we increase the rate
from 0.01 to 0.05, we will generate data, as
shown in Figure 16E. TICS analysis will result in
ACF that, when fit, will still underestimate the
number densities but by order of magnitude,
while estimating still quite accurately the
diffusion coefficient (Fig 16F).

Although we cannot directly remedy the
images affected by photobleaching, there have
been correction in both FCS and TICS which
account for it. We will discuss these further in
section VII.

Q9 for the learner
Are there photobleaching rates at which TICS

would be an accurate technique to measure
diffusion coefficient? How would you determine
this rate considering the diffusion time?

VII. DISCUSSION
We hope that the user of these exercises has

obtained a good understanding of the basic
models and techniques in FFCS. In particular,
we hope you have gained insight into how the
parameters measured relate to the CFs calcu-
lated from the raw fluorescence fluctuations. To
gain additional perspective of the scales of
diffusion coefficients or flow speed measured in
literature, we invite consultation of the table in
Appendix D. Note that wide variability of the
speed of some molecules or organelles have,
depending on their system context. For exam-
ple, adhesion molecules, such as integrins or
paxilins, will exhibit intermediate speeds of ~1
to 5 lm min�1 in the context of cellular
gripping to substrate during cellular migration
(22, 23, 25). Compare this to several orders of
magnitude lower speed of the corneal stem
cells during the migration in the context of
wound healing (30, 31). Of course, the cellular

speed during migration will also depend on
several environmental factors, such as substrate
stiffness. Nevertheless, these examples demon-
strate that events within cells often occur on
much faster timescales to facilitate a cellular
task at a slower rate, such as cellular migration.
Similarly, during cell division, a new cell
membrane or for plant cells, a cell wall, is built
by vesicles fusion (29) and active transport of
these happens relatively quickly at a rate of ~1
to 10 lm min�1. Note that the same molecule
or organelle, such as actin filaments, can flow or
assemble and disassemble at different rates,
depending on the cellular or role context.
Indeed, when T cells are activated and mem-
brane proteins, such as T-cell receptors, are
corralled and organized in functional units,
actin filaments flow at a rate of ~1–5 lm min�1

(26). On the other hand, in the context of
dendritic cells poking through dense tissues
with organelles, such as podosomes, actin
organizes in these organelles that assemble at
an order of magnitude slower rate (28). We
hope that the reader, by gaining a greater
understanding of FFCS approaches, has gained
a greater appreciation of the complexity of
molecular and cellular dynamics and how they
are interrelated.

During the exercises performed, we inspect-
ed the residuals of the fit that inform of the
degree of model fits to the CF data. To further
appreciate the topic of the biases and standard
deviation in FCS measurement, we refer the
readers to the following literature (19, 32–36).
Note that it will not always be possible to fit a
model to the data, especially if the CFs are very
noisy. In section VI.G, we explored how the
background noise can skew the ICS CF so that it
does not have a single 2D Gaussian shape. In
this scenario, we can often correct for this type
of noise and avoid G(0,0) in the fitting.
However, there are instances in which spatio-
temporal sampling is insufficient or the CF is so
noisy that it is not possible to correct the data
or CF. The phasor analysis approach is one
method that may overcome this issue. It was
developed originally for fluorescence lifetime
data characterization but was applied to both
FCS (37) and more recently ICS (38) data, to
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characterize the CFs without resorting to
nonlinear fitting. Indeed, this approach allows
us to characterize and group CFs without
fitting, even in the presence of significant
noise, while any attempt of nonlinear fitting
would be difficult or rather impossible. For
users interested in exploring more how phasor
analysis work, but also for an integrated
platform for single molecule and ensemble
approaches (ICS, RICS, and FCS), we suggest the
MATLAB-based free software by the name PAM
(39). For a software that integrates most of the
correlation spectroscopy approaches, please
consult the SimFCS Web page (http://www.
globalssoftware.com).

Note that some biases can be corrected on
raw data and some accounted for when fitting
CFs. A careful experimenter will try to minimize
the biases and account for them in acquisition
and analysis of data. When impossible to avoid
biases, it is absolutely necessary to have
sufficient amount of control data and measure
all the conditions (control and others) with
same systematic biases, so measured values of
densities, diffusion coefficients, flow parame-
ters, or others can be compared. After all, it is
difficult to measure an absolute value of
anything, as measurement errors are inevitable,
but it is essential to track these biases and be
able to account for them when comparing the
measured values.

Note that we did not look at more complex
scenarios, such as with multiple dynamic
populations, with different quantal brightness
occur. This could be a case in which a monomer
protein aggregates into a higher oligomer. One
of the complexities that arise from this mea-
surement is that both the monomer and
oligomer state give rise to fluctuations. Given
that the CF amplitude scales as the density
squared and is directly proportional with the
brightness, it would require 16 times more of
monomer than tetramer to produce equal
contribution to the CF amplitude. Therefore,
higher oligomers can mask and even dominate
the CFs. Luckily, there are a few extensions to
the techniques that occurred over years,
separating contributions from different oligo-
mers in stationary image data (40–42) and in

dynamic data (43, 44). Another way to circum-
vent the problem is to label proteins with
photoactivable fluorescent proteins, and de-
pending of subset of fluorophores being active,
measure CF from only visible population (45).
Even multiple flows were successfully detected
within the same region of interest through
extensions of STICS (46, 47).

In the current article, we covered only the
cases in which a single channel acquisition
(imaging) occurs and did not explicitly consider
the cases of 2-color labeling. Indeed, if we had a
scenario in which 2 potentially interacting
proteins are labeled with 2 spectrally distinct
fluorophores, then we could apply either FCCS,
ICCS, or STICCS to investigate the interaction
between these proteins and the codynamics (3,
19, 20, 35).

When we looked at cases in which particles
were simulated to diffuse within system, we
assumed that they underwent free diffusion. In
reality, most proteins and organelles in cells
diffuse anomalously or are confined by the
surroundings. There has been a body of work in
last 10 years or so in both FCS and ICS
extensions to account for this modality of
particle motion. In particular, the FCS beam
was shaped and for every beam size FCS ACF
was recorded (48, 49). Plotting the characteris-
tic decay time of ACF for each of these beam
volumes versus the squared radius of volume
led to a phenomenologic relation called diffu-
sion law, which is the equivalent of MSD from
particle tracking. The MSD, usually by its trend
versus temporal lag, instructs us on what type
of confinement or obstacle caused the anom-
alous or confined random walk. Extracting the
equivalent of MSD from the CF was done in the
past by using STICS (25, 50) or equivalent
imaging correlation approach (51) and even
allowed for diffusion coefficient mapping (25,
45), as we saw in the theoretic development
leading up to Eqs. 10 and 11 and as shown in
spreading STICS CF in Figure 14D.

Similarly, measurement of diffusion coeffi-
cient without any bias of the fluorophore’s
photophysics was explored in Fourier space of
full spatiotemporal CF, through another ICS
extension termed k-space ICS (kICS) (52). This
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technique exploits Fourier space to separate
dynamical and photophysics components of CF
and furthermore was applied to measure
binding kinetics (53) and confined membrane
protein dynamics (54, 55). Both kICS and STICS
explore more than a single spatial position,
which makes these techniques less sensitive in
recovering the dynamical parameters, such as
diffusion coefficient, in presence of photo-
bleaching or other fluorophore intermittent
emission. As explored in the last section of this
article, measuring fluctuation in time from a
single pixel, as in TICS or FCS, leads to an ACF
that is prone to errors. Indeed, there is a bias in
dynamic parameters measured if the character-
istic time of photobleaching or blinking is
shorter than the average diffusion or flow time.
On the other hand, multifoci FCS, line scan
analysis through pair CF (44) or beam-varying
FCS (48, 49) probe more than one spatial
position and correlate spatiotemporally. Other
corrections for photobleaching have been
explored, such as signal detrending, and in
the case of TICS analysis, accounting for the
photobleaching decay contribution to the CF
(56). For a good introduction to kICS and
known applications, we recommend that the
user consults the book chapter (57). Also, for an
example of how kICS can be applied, as
demonstrated through a video journal, we
suggest (58).

In summary, FFCS techniques have been useful
from the onset some 50 years ago and have
grown in number and usage ever since then. We
hope that the reader was able to appreciate this
tremendous body of work and will find a way of
applying some of the existing tools to future
research. If the reader is unable to find the right
FFCS tool in the toolbox, then we hope the
reader will make his or her own extension and
share with the greater FFCS community!
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APPENDIX A. DERIVATION OF EQ. 3
In this appendix, we will see how we obtain Eq. 3 from the

generalized FCS ACF expression (Eq. 1). The similar derivation
would lead to Eqs. 4 and 6–9. First, let us define the observation
volume spatial function:

IðrÞ ¼ I0e
�2x2þy2

x2
0 e
�2 z2

x2
z ðA1Þ

Let us assume for simplicity that we have a single population, M
¼ 1, without loss of generality as terms for other population
would be equivalent and summing up, then Eq. 1 reduces to

GðsÞ ¼
g2
Rþ‘

�‘
IðrÞIðr0Þhdcðr; 0Þdcðr0; sÞidrdr0

ghci
Rþ‘

�‘
IðrÞdr

� �2
ðA2Þ

where hci is the equilibrium concentration of particles, which is
assumed constant. Also, assuming that particles are freely
diffusing in 3D with the diffusion coefficient D, then the
density–density ACF, hdcðr; 0Þdcðr0; sÞi, can be defined as

hdcðr; 0Þdcðr0; sÞi ¼ hci
ð4pDsÞ

3
2

e
�ðr�r0Þ2

4Ds ðA3Þ

This last expression comes from solving the diffusion equation,
which same as Eq. 2 but with only first term on the right-hand
side and assuming the initial condition c(r, 0)¼hci. Then, Eq. A2
writes

GðsÞ ¼
Rþ‘

�‘
e
�2x2þy2

x2
0 e
�2z2

x2
z e
�2x02þy02

x2
0 e

�2z02

x2
z e
�ðr�r0Þ2

4Ds dxdydzdx0dy0dz0

hcið4pDsÞ3ð
Rþ‘

�‘
e
�2

x2þy2

x2
0 e
�2 z2

x2
z dxdydzdx0dy0dz0

ðA4Þ

where we cancelled hci from numerator and d2. Here r � r0 ¼
ðx � x0Þ þ ðy � y0Þ þ ðz � z0Þ define the dummy variables of
integration r and r0. The trick to integrate all of the spatial
integrals is to group all the terms together, say for dummy
variable x0 and then one of the definitions of the integral of
Gaussian function: Z þ‘

�‘

e�aðxþbÞ2 dx ¼
ffiffiffi
p
a

r
ðA5Þ

or Z þ‘

�‘

e�ax2þbxþcdx ¼
ffiffiffi
p
a

r
e

b2

4aþc ðA6Þ

Combining the terms together and completing the squares
simplifies all of the exponentials in the numerator, leading to
the final solution for FCS ACF for 3D free diffusion:

A guide to correlation spectroscopies

Pandzic and Whan. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2019.000143 65

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-13

https://doi.org/10.35459/tbp.2019.000143.S1
https://doi.org/10.35459/tbp.2019.000143.S1


GðsÞ ¼ 1

p
3
2x2

0xz

1

ð1þ s
sD
Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

xz

� �2
s
sD

r ðA7Þ

For the measurement from a membrane that is perpendicular
to the axial direction of acquisition, we can assume that xz – .

0, and denominator in Eq. A3 has power of 1, which, in turn,
converts Eq. A7 to

GðsÞ ¼ 1

px2
0

1

1þ s
sD

� � ðA8Þ

This is just the Eq. 3, where M¼1, for a single dynamic population.
We can easily see why sum of freely diffusing populations would
lead to an FCS ACF that is a sum of such terms.

Similar type of integration over spatial coordinates lead to
the Eq. 7 in TICS. For flow model, one would need to find a
similar density–density ACF, as shown in Eq. A3, but in case of
flowing particles. To obtain this, one would need to solve a
partial differential equation, with the initial condition of
constant flow ~v and with the second term alone on the right-
hand side of Eq. 2.

APPENDIX B. SYSTEM REQUIREMENTS
(a) Any platform supporting MATLAB (preferably the latest

version).

(b) There are no hardware requirements per se. Processor
speed will play a large role in the analysis time and the
amount of system RAM will dictate the maximum size of
the image series that can be analyzed.

APPENDIX C. ANSWERS TO THE
QUESTIONS

Answer to Q1
From Figure 6B,C, residuals in range 1 to 10 s show that 2D

diffusion fit model did not fit the FCS ACF, as well as the 3D
Diffusion fit. The simulated data was generated by using D¼0.03
lm2 s�1 and particle density ¼ 1.5 particles per micrometer
squared. From Figure 6, we can see that the most accurate
estimate of these parameters was obtained from the 3D diffusion
fit, where recovered values were 0.032 lm2 s�1 and 1.6 particles
per micrometer squared. It is possible that if a 2-component
diffusion model was fit, with 5 fit parameters (2 amplitudes, 2
decay rates, and 1 offset), it would lead to even smaller residuals
in the temporal lag range of 10 to 100 s. Nevertheless, it is
obvious that there are no 2 decays (dynamic populations)
present in the ACF, hence making the choice of 2-component fit
incorrect, independent of how low resulting residuals are.
Similarly, v2 or R2, which are other metrics for goodness of fit,
might give better results for 2-component fit, but correct metric
in this case would be the adjusted R2, as it takes into account the
number of fitted parameters for a given model. In other words,
fitting model with more parameters is not the right solution if it
is used just to improve the goodness of fit and caution should be
in order when choosing the fitting model.

Answer to Q2
The set particle flow in this FCS simulation was (vx, vy, vz)¼

(0 .1,�0.1 ,0.05) lm s�1 , giv ing the total speed of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
012 þ ð�01Þ2 þ 0:052

q
¼ 0:15 lm s�1. Also, the set density

of particles was 1.5 particles per micrometer squared.
Comparing the 2 fitted model on Figure 7B,C, it is clear that
the single component flow fit better follow the trend of
simulated ACF in this case. The recovered speed and particles
densities of 0.15 lm s�1 and 1.8 particles per micrometer
squared are very close to the set values.

Answer to Q3
In this simulation scenario, 1 diffusing population (D¼ 0.05

lm2 s�1) and 1 flowing population (vx, vy, vz)¼ (0.07,�0.05,0.04)
lm s�1 or v ¼ 0.0948 lm s�1 were simulated with densities of
1.5 and 0.7 particles per micrometer squared, respectively.
Fitting a model incorporating the sum of 3D diffusing and
another flowing population leads to ratio of densities of ND=Nv

¼ 2:09 (compared with 1.5/0.7 ¼ 2.14), diffusion coefficient of
0.051 lm2 s�1), and speed of 0.095 lm s�1. These recovered
values are in very good agreement with set values and
attempting to fit any other model presented in early sections
of FCS would not lead to correct estimates of particle diffusion
coefficient, flow speed and ratio of their densities. In the
example simulated, the diffusion time was sD ¼ x2

0

�
4D¼ 0.8 s,

therefore requiring the sampling time to be at least half of that
value. For this reason, we set the integration time to 0.1 s and
consequently extended the simulation to 50,000 samplings or
5,000 s in total. Also, given that flow speed leads to the
characteristic decay at sf ¼ x0=v ¼ 4 s, we want to have the
maximum temporal lag extending to at least 10 s, so the fit can
recover the second decay due to the flow. In turn, given that
the FCS ACF becomes noisier for larger temporal lags (see lags
100 s and above of ACF in Fig 8D), we wanted to have enough
sampling so that ACF in the temporal lags 0 to 100 s is well
defined for fitting. That is how on the basis of characteristic
decay times, which are also characteristic transit times through
the observation volume of any dynamic population involved, sD

or sf, that we determine the total length of acquisition.

Answer to Q4
If we were to rerun ICS analysis on the same dataset, but this

time, choose to take the temporal average of the ICS ACF and
fit it with the 2D Gaussian, the estimate of particle number
density would improve. Indeed, comparing the results from
Figure 9D, where we have 3.51 particles lm–2 while when we
averaged the ICS ACF from all the frames, as shown in Figure
9F, we obtain 3.07 particles per micrometer squared, which is
much closer estimate of set density (3 particles per micrometer
squared). It is a consequence of the averaging out of noise
peaks that occur at spatial lags larger than few pixels from the
main peak in ICS ACF. Although those spurious peaks from ACF
of each image average out, the main central peak becomes
amplified as it occurs in every frame ACF. Note that if particles
in the image are subdiffraction in size, then the waist of ICS ACF
x0 is a good estimate of the microscope effective PSF lateral
radius, making ICS a very quick way of measuring your PSF
lateral extent.

Answer to Q5
Diffusion fit to TICS ACF produced quite good estimate of

simulated particles density and diffusion coefficient (,1%
error). On the other hand, trying to fit a 1 component flow
model to the data resulted in very large residuals as shown in
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Figure 10C. Obviously, this model does not fit the TICS ACF well
for this simulated example.

Answer to Q6
The recovered flow value from STICS analysis was in very

good agreement with set value in simulation. The collective
information from spatiotemporal correlation and position of
STICS CF peak at several lags is what makes this methodology
robust. If one or few temporal lags gave erroneous CF, which, in
turn, would deviate from the linear trend, shown in Figure 12F,
the overall linear fit to extract speeds in x and y directions
would still recover approximately same values. In the example
of immobile population bias, we can see how an extra peak in
STICS CF affected the recovery of flow value and how the
immobile filtering fixed the problem. In case you have multiple
populations flowing, you will obtain multiple STICS CF peaks
moving in same direction and at same rate as the underlying
particle flow. To characterize these complex dynamics, we point
the reader to the literature examples mentioned in section VII,
such as the velocity landscape correlation (47).

Answer to Q7
The flow recovered by STICS in both x and y directions was

within ,1% error, even in this case in which the particles were
undergoing simultaneous flow and diffusion. Interestingly, the
STICS CF was spreading and decreasing in amplitude at the
same time that it was translating due to the flowing of the

particles. If the user refers to the Eqs. 10 and 11, it can be seen
that the increase in the CF width squared is proportional to the
diffusion coefficient of particles. Therefore, a linear trend in
x2

0ðsÞ versus s has a slope that is equal to the 4 times diffusion
coefficient.

Answer to Q8
Applying TICS without background noise correction (or

without mask of 0.5) resulted in diffusion coefficient of ~0.04
lm2 s�1. Simulating the masked data and the correction for
background noise should improve the recovered diffusion
coefficient value to about 0.09 lm2 s�1.

Answer to Q9
If the rate of diffusion is faster than the photobleaching, the

particles will, on average, have time to transit the observation
volume, before being in the ‘‘off’’ state. This rate, for example
simulated is 1=sD ¼ 0:25s�1. Because that rate is much higher
than either of simulated photobleaching rates, we were safe to
estimate D by using fitting of TICS ACF. If on the other hand,
our photobleaching rate was higher than 0.4 s�1, then, on
average, the particle time ‘‘on’’ would be shorter than the
diffusion time and effectively would shift TICS curve to the left,
suggesting faster diffusion then the set value. Any single spatial
point acquisition approach, such as FCS, will suffer from this
bias.
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