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ABSTRACT The behavior of ion channels and transporters is often modeled
using discrete state continuous-time Markov models. Such models are helpful for
the interpretation of experimental data and can guide the design of experiments by
testing specific predictions. Here, we describe a computational tool that allows us to
create Markov models of chosen complexity and to calculate the predictions on a
macroscopic scale, as well on a single-molecule scale. The program calculates
steady-state properties (current, state probabilities, and cycle frequencies),
deterministic macroscopic and stochastic time courses, gating currents, dwell-time
histograms, and power spectra of channels and transporters. In addition, a visual
simulation mode allows us to follow the time-dependent stochastic behavior of a
single channel or transporter. After a basic introduction into the concept of Markov
models, real-life examples are discussed, including a model of a simple Kþ channel, a
voltage-gated sodium channel, a 3-state ligand-gated channel, and an electrogenic
uniporter. In this manner, the article has a modular architecture, progressing from
basic to more advanced topics. This illustrates how the MarkovEditor program can
serve students to explore Markov models at a basic level but is also suited for
research scientists to test and develop models on the mechanisms of protein
function.
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I. GENERAL MOTIVATION
At a molecular level, diffusion of substrates and macromolecules

combined with conformational changes of proteins underlie most
biologic processes. Even though these molecular events are not
occurring in thermodynamic equilibrium, they are actually in most
cases not far from equilibrium. In general, processes that occur close
to thermodynamic equilibrium are energetically favorable compared
with processes far from equilibrium. Indeed, energetic efficiency is one
of the major drivers of evolution (1). An instructive example is the
energy consumption of the human brain compared with that of
human-made computers. The brain’s computational power has been
estimated to be above the most potent presently available
supercomputers (2).

Despite this capacity, the energy demand of the human brain
corresponds to only roughly 20 W, i.e., less than a conventional (old-
fashioned) light bulb. In contrast, a typical supercomputer consumes
on the order of megawatts, i.e., many orders of magnitude more. One
of the reasons behind the incredible efficiency of the brain is that the
mechanisms of biologic data processing operate rather close to
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thermodynamic equilibrium. The free energy
differences between the various conformations
of proteins are of the order of a few kT. The free
energy corresponding to 1 kT is the energy that
can be easily surmounted by random move-
ments in thermal equilibrium. In terms of
equivalent electrical voltage, kT corresponds
to ~0.025 V ¼ 25 mV (i.e., kT/qe ~ 25 mV at
physiologic temperatures, where qe is the
absolute electrical charge of an electron). This
is a much smaller value than the operating
voltage of transistors in computers, which is of
the order of ~3,000 mV ¼ 120 kT/qe. Because
the probability of a reaction depends in an
exponential manner on the free energy differ-
ence (between initial and final states), a value
of 120 kT assures almost 100% deterministic
operation, but on the downside, it is paid for
with a large power consumption. In contrast,
biologic processes are mostly not deterministic
but often rely on redundancy to assure
approximate accuracy. There are, of course,
many exceptions to this simplified view. For
example, for voltage-gated cation channels,
whose opening transition is accompanied by
the translocation of up to 13 elementary
charges, the free energy difference upon a
potential shift of 75 mV will amount to 75 mV 3

13 qe, corresponding to 39 kT.
Even though, theoretically, proteins can exist

in a practically unlimited number of conforma-
tions (or microstates), in many cases their
enzymatic function can be described in terms
of a limited number of states that correspond
to an ensemble of microstates with similar
conformation. A classic example is an enzyme
that binds and transform a single substrate (Fig
1A). The cartoon in Figure 1A is clearly
simplified, but it could provide more than a
qualitative description of enzyme function.
Indeed, the scheme of Figure 1A could be
used, in principle, to generate a precise
mathematic description of how the enzymatic
activity depends on the concentration of
substrates, conformational changes of the
enzyme, and other factors.

A problem is that most biophysical and
biochemical methods yield information on the
average behavior of the ensemble of a large

number of identical or similar molecules but do
not capture the behavior of single molecules. In
1976, the patch-clamp technique and bilayer
recordings allowed one for the first time to
observe the function of a single biologic
molecule in real time (3, 4). Figure 1B shows a
typical single-channel recording from skeletal
muscle: the openings and closings of a single
acetylcholine receptor channel in the presence
of 50 nM of suberyldicholine are clearly visible
(5). Since these early experiments, the patch-
clamp method was quickly adopted in many
laboratories worldwide and led to the discovery
of a plethora of different ion channels present
in practically all cell types (6).

Detailed analysis of single-channel record-
ings revealed 2 important properties: the
channels switch between distinct conductance
states in a very short time (too short to be
measurable by the patch-clamp technique) and
the distribution of the dwell times in these
conductance states can be very well described
by exponential distributions. This is illustrated
in Figure 1C for a hypothetical ion channel with
2 closed states and 1 open state. The histogram
of all open-channel events is well described by
a single exponential distribution, whereas the
histogram of the closed-channel events is well-
fitted by a double exponential function (see
pink curves in Fig 1C). In fact, very often the
dwell-time distribution of shut (not conducting)
periods shows a complex multiexponential
distribution, originating from conformational
changes occurring before channel opening.
These conformational changes cannot be
detected by changes of the current amplitude
but can be indirectly inferred from the kinetic
analysis. As will be explained in more detail in
the following, these properties are very well
described by a so-called time homogeneous
Markov process. The defining feature of a
Markov process is the lack of memory: the
probability that a state transition (e.g., from
closed to open) happens does not depend on
how much time the channel has spent in the
previous conformation. This concept will be
explained in more detail later.

These rather general considerations explain
why to obtain a mechanistic insight into a
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Fig 1. Principles of enzyme and ion channel function. In (A) the cartoon depicts the reaction steps of a hypothetical enzyme that binds a substrate, cuts
it, and then releases 2 products. (B) Single-channel traces of an acetylcholine receptor at various voltages are shown (4). (C) This illustrates the typical
dwell-time distributions of a 3-state system with 2 closed states and 1 open state, in which the open dwell-time distribution is well fitted by a single
exponential function (left, pink line), while the closed state histogram requires the sum of 2 exponential functions (right, pink line). The histograms
were generated by MarkovEditor and a simple 3-state system. (D) All examples of Markov models are explained in more detail in the present article.
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complex biologic process. It is essential to
study the individual components of the
system in isolation and under controlled
conditions that bring them close to thermo-
dynamic equilibrium. A prominent example is
the propagation of electrical signals along the
sometimes extremely long processes of nerve
cells (axons), which has attracted considerable
attention among physiologists in the past
century. In particular, the studies of Hodgkin
and Huxley on the basis of the generation and
propagation of the neuronal ‘‘action poten-
tial’’ (6, 7) have paved the way for a detailed,
mechanistic investigation of the molecular
basis of electrical excitability. The action
potential is an explosive change of the cellular
membrane potential from a normally negative
value (around �70 mV) to a positive value
(around 40 mV, a process called depolarization)
within roughly a millisecond, followed by a
slightly slower repolarization of the membrane
potential to the resting value of �70 mV. In
nerve axons, that connect, for example, the
brain to motor neurons and drive muscle
contraction, the action potential travels as an
excitatory wave at high speed toward the
target neuron or muscle. The mechanisms
underlying action potential generation and
propagation have been described in terms of
probabilistic discrete state continuous-time
(i.e., Markov) models in a groundbreaking
publication by Hodgkin and Huxley in 1952
(7). Intriguingly, this approach allowed for the
laying out the mechanistic underpinning of
the action potential 50 years before the three-
dimensional structure of the ion channels
involved was available (8, 9). The neuronal
action potential is driven by the opening of
ion channels in the nerve membrane. Voltage-
gated Naþ channels underlie the initial depo-
larization. The reason for the depolarization is
that the extracellular Naþ concentration is
much higher than the intracellular Naþ con-
centration. Therefore, opening of Naþ channels
leads to a Naþ influx at voltages more negative
than the Naþ equilibrium potential, which is
aroundþ50 mV, i.e., much higher than normal
membrane potentials. After the upstroke of
the action potential, the combined effect of

Naþ channel inactivation, presence of back-
ground Kþ channels, and the delayed opening
of voltage-gated Kþ channels results in the
repolarization of the membrane potential. The
reason why Kþ channels repolarize the mem-
brane potential is that extracellular Kþ is much
lower than intracellular Kþ. Therefore, at
voltages more positive than about �80 mV,
the Kþ equilibrium voltage in most cells, Kþ

efflux occurs upon opening of Kþ channels.
On a historical note, Hodgkin and Huxley

were not aware of the mechanistic value of the
theory in terms of conformational change of
proteins. Yet, the idea of probabilistic gates
regulating opening of the voltage-gated ion
channels continues to be highly relevant for the
understanding of ion channel and enzyme
function in general.

Typical schemes of Markov models used to
describe channel gating and transporter func-
tion are illustrated schematically in Figure 1D,
which shows the Markov models discussed in
the present article. The various states of the
model are connected by rate constants (indi-
cated by arrows), whose meaning will be
defined in detail in the next section. The
general mathematic treatment of such Markov
models has been covered in several excellent
publications (10), which are highly recommend-
ed for the interested reader. For a basic usage
of MarkovEditor (http://users.ge.ibf.cnr.it/
pusch/sframes/StateEditor.html), such deep
knowledge is not strictly necessary but is
certainly useful. In mathematic terms, Markov-
ian systems respond in a relatively simple
manner to an external perturbation, as, for
example, a change in membrane potential or
ligand concentration. The time-dependent re-
laxation of the occupation probabilities of the
various states upon perturbation of a Markov
model is provided by the sum of n exponential
functions, where n¼Number of states -1,
and where the time constants of the exponen-
tials are the eigenvalues of the so-called Q
matrix of the rate constants (10–12). For
example, the relaxation of a 3-state voltage-
gated channel upon a voltage jump is de-
scribed by a double-exponential function. Most
electrophysiologists know very well that it is
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extremely difficult to extract more than 2 time-
constants from a given dataset. Thus, it may
seem that Markov models with more than 3
states might be rather useless in practical
terms. Nevertheless, a priori knowledge of the
possible physical states of the system, com-
bined with symmetry arguments, can provide
deep insight into the molecular machinery of
the channel or transporter of interest. More-
over, due to the mathematic complexity of the
problem, for systems with more than 2 states, it
is very difficult to understand at the intuitive
level how changes of any rate constant affect
the macroscopic properties.

II. TARGET AUDIENCE AND
OUTLINE OF THE ARTICLE

The present article aims to provide a rather
intuitive tool, accessible to a wide readership,
to explore simple and complex Markov models,
allowing to directly simulate the effect on
channel or transporter behavior caused by
changes of any microscopic parameter, both
at the single-channel level, as well as at the
ensemble level. The article is organized such
that the different applications of the computa-
tional tool MarkovEditor are presented as
blocks of increasing complexity. This is done
in different, self-contained paragraphs such
that the reader can choose the sections with
the appropriate level.

Our idea is that this software and the
relative tutorials are most useful for people
who already have some background knowl-
edge on ion channels or transporters and who
desire a tool to be guided into the quantita-
tive study of various specific aspects. A deep
understanding of single-channel behavior
might be more difficult to achieve based
solely on the more commonly studied prop-
erties of macroscopic currents explained, for
example, in a university physiology course.
The expected users of MarkovEditor are
indeed master’s students, master’s student
interns, PhD students or early postdoctoral
students rather than complete beginners such
as bachelor students. The concept is to help
them visualize how the theory, summarized in

equations, can actually describe a channel’s
behavior and what is the impact of some
parameters, such as a rate constant, on the
final current. This can be seen both at the
single channel and the whole-cell level. We
envision some teaching-scenarios, in which
such a tool can be useful. A possible situation
is when a principal investigator (PI) wishes to
introduce into the world of Markov models
PhD students or early postdoctoral students,
who have worked only with whole-cell
currents. The PI, or more experienced mem-
bers of the lab crew, could be available for
guidance, when required. The software can
also be used by professors teaching in
advanced courses: the lecturer could go
through the theoretic aspects step by step,
while showing models and simulations with
MarkovEditor. In this case, the software and
the present article can also be used for home
exercises, to practice on concepts introduced
during class. Another situation in which
MarkovEditor might be helpful are practical
courses, in which a group of students rotate
in a lab, where single-channel experiments
are routinely performed. MarkovEditor could
be used to explain what they are going to see
in the following weeks and what is the
meaning of the data analysis they will be
required to do. Finally, MarkovEditor can be a
useful tool for active scientists working on
transporters or channels or are using other
single-molecule approaches.

We should not forget to mention that other
Markov modeling software is freely available.
The most prominent are QuB (https://qub.
mandelics.com/) and programs from the HJCFit
suite (https://dcprogs.github.io/HJCFITdev
docs/). The scope of these programs is,
however, quite different from that of MarkovE-
ditor. HJCFit programs are highly specialized for
professional single-channel data analysis, in-
cluding missed events correction (13). QuB has
overlap with MarkovEditor but lacks several
features, such as transport cycle analysis,
varying parameters, and others. However, the
reader should consult the corresponding Web
sites to find out more detail on these programs.
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III. THE 2-STATE MODEL
Before delving into complex models, we will

discuss the simplest possible Markov model,
the 2-state system (Fig 2A,B). We will first
describe the fundamental mathematics of the
system, defining the concept of rate constants
and highlighting the essential feature on any
Markovian system: the lack of memory. We will
then use the 2-state system to introduce most
features of the MarkovEditor program.

The 2-state system is schematically depicted
in this (apparently innocent) scheme:

C
!a

 
b

O ð1Þ

At any given thermodynamic condition,
defined by membrane voltage, pressure, tem-
perature, or concentration of ligands, this 2-
state system is characterized by 2 numbers: the
opening rate constant a and the closing rate
constant b (Fig 2A). The basic assumptions
underlying this simplified description are

(a) the channel can be either in state O (open)
or in state C (closed; i.e., there are no
intermediate configurations),

(b) transitions between states occur abruptly,
and

(c) the channel is completely memoryless.

The latter assumption is what defines Markov
systems and means that after a transition to a
new state has occurred, the probability that a
further transition takes place, is independent of
how much time the channel has already spent
in the current state. Only with this assumption
the following definition of the rate constants a
and b makes sense: Given a very small time
interval dt and given that the channel is in state
C at time t, the probability that it makes a
transition to state O between t and t þ dt is
equal to

P O; t þ dtjC; tð Þ ¼ adt ð2Þ
Here, the notation of conditional probability

is used, i.e., P(AjB) means probability of A, given
that B is true. Thus, P(O, t þ dtjC, t) is the
probability to find the channel in state O at
time t þ dt, knowing that it was in state C at

time t. The probability of this transition is
proportional to the time lag dt (as long as it
remains very small) and proportional to the
opening rate constant a. Thus, a provides the
speed with which the channel switches to state
O.

Similarly, the closing rate constant b is
defined by

P C; t þ dtjO; tð Þ ¼ bdt ð3Þ
These equations are valid for infinitesimal

times dt. To deal with longer times, we will
need the concept of a differential equation as
described below.

The Markov property of lack of memory
implies that the transition probability is inde-
pendent of t and can thus be expressed as

P O; t þ dtjC; tð Þ ¼ P O; dtjC; 0ð Þ ¼ adt ð4Þ
i.e., knowing that the channel is closed at time
0, the probability to find it open after time dt is
equal to adt.

The opening and closing rate constants
define the rate at which the system can
surmount the energy barrier between the 2
states, as illustrated in Figure 2B. One can
envision the system undergoing thermal fluc-
tuations, attempting continuously to overcome
the barrier characterized by a certain activation
energy, Ea. Only occasionally has the system
enough energy to surmount the barrier. This
probability depends in an exponential manner
on the activation energy (14). Most importantly,
the transition probability is independent of
how long the channel has already been in a
given state.

These mathematic properties imply that PO(t)
and PC(t), i.e., the time-dependent state prob-
abilities, obey the following fundamental linear
differential equations:

dPO tð Þ
dt

¼ �aPO tð Þ þ bPC tð Þ ð5Þ

and

dPC tð Þ
dt

¼ aPO tð Þ � bPC tð Þ ð6Þ

Differential equations as these relate the rate
of change of a quantity (i.e., its temporal
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Fig 2. The 2-state model. (A) The cartoon depicts 2 configurations of an ion channel, closed (left) and open (right) with the rate constants a
and b relative to the 2 transitions. (B) A hypothetical activation energy profile connecting the 2 states is illustrated. (C) The concept of a
gating charge and the electrical distance d is shown (see text for details).
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derivative) to the value of the quantity itself.
The previously mentioned equations are in
essence equivalent to those used to describe
chemical reactions by the law of mass action.
For example, the isomerization of a compound
from a cis to a trans conformation would be
described by a completely equivalent set of
differential equations.

Note that summing Eqs. 5 and 6 yields

dPO tð Þ
dt
þ dPC tð Þ

dt
¼ 0 ð7Þ

ensuring that the total probability to be in any
state remains constant and equal to 1.

In fact, for the 2-state model

PO tð Þ þ PC tð Þ ¼ 1 ð8Þ
i.e., the channel has only 2 possibilities, to be
either in the closed or open state. Thus, PC(t)
can be substituted by

PC tð Þ ¼ 1� PO tð Þ ð9Þ
Inserting this substitution into (Eq. 5), i.e.,

replacing PC(t) by 1 � PO(t), leads to the
following linear differential equation of the
single function PO(t):

dPO tð Þ
dt

¼ �ðaþ bÞPO tð Þ þ b ð10Þ

This differential equation determines the
response of the 2-state system to a perturba-
tion, which could be a change in voltage or a
change in the concentration of a ligand. Upon
the perturbation, the system relaxes to a new
steady state, determined by the altered open-
ing or closing rate constants, according to the
fundamental time-dependent single-exponen-
tial solution

PO tð Þ ¼ a
aþ b

þ P0
O �

a
aþ b

� �
e� aþbð Þt

ð11Þ
Here, P0

O is the initial open probability at time
0 (assumed to be known). It is instructive to
verify that this is indeed a solution of the
differential equation (Eq. 10), with the initial
condition PO(0) ¼ P0

O. At infinite time, which
corresponds to a true equilibrium in this case,
PO reaches the steady-state value

PO ‘ð Þ ¼ a
aþ b

ð12Þ

The relaxation from the initial state to the
final equilibrium occurs with the time constant

s ¼ 1

aþ b
ð13Þ

Thus, using a slightly different notation, the
fundamental solution (Eq. 11) can also be
written as

PO tð Þ ¼ PO ‘ð Þ þ P0
O � PO ‘ð Þ

� �
e�

t
s ð14Þ

and similarly one obtains

PC tð Þ ¼ PC ‘ð Þ þ P0
C � PC ‘ð Þ

� �
e�

t
s ð15Þ

Before inserting this 2-state model into the
MarkovEditor program for further exploration,
we will endow it with a typical voltage
dependence of the rate constants, a property
that is fundamental for electrical excitation in
neurons but also important in many electrogen-
ic transporters. In voltage-gated cation channels,
highly specialized electrically charged segments
of the channel proteins, the so-called voltage
sensors, move within the electric field across the
membrane upon a change of the membrane
voltage (6). In the simple 2-state model, voltage
sensor movement and channel opening occur
simultaneously, i.e., they are perfectly coupled.
This is not fully realistic but useful to illustrate
the basic concept. As depicted in Figure 2C, the
gating charge q, associated with voltage sensor
movement, can be either close to the inside of
the membrane (in the closed state) or close to
the outside (in the open state), providing
stabilization of the open state at positive
membrane voltages. It is convenient to express
the gating charge of a single channel in terms of
the absolute elementary charge of an electron,
qe¼ 1.602 3 10�19 C, i.e.,

q ¼ zqe ð16Þ
introducing the gating valence z. The rate
constants depend in an exponential manner
on the membrane potential V and on the gating
charge in the following manner

a Vð Þ ¼ a0edzVqe= kTð Þ ð17Þ
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and

b Vð Þ ¼ b0e� 1 � dð ÞzVqe= kTð Þ ð18Þ
These equations are crucial for all models

discussed in this article: a0 and b0 are the
respective opening and closing rate constants
at a membrane potential of 0 mV, k is the
Boltzmann constant, qe the (absolute) charge of
an electron, and T the absolute temperature.
The relative apparent electrical distance d takes
into account a possible asymmetric depen-
dence of the rate constants on voltage (see Fig
2C). For a more elementary introduction into
the concept of electrical distance, the reader is
referred to (6). The exponential voltage depen-
dence of the rate constants is based on
transition state theory, which cannot be ex-
plained in detail here; see (14). Briefly, as
explained previously, the speed of a conforma-
tional change is determined by the activation
energy. In addition to the conformational
energy (expressed in terms of a0 and b0), for a
voltage-dependent transition, the activation
energy includes the energy that has to be
provided to move the gating charge along a
certain fraction of the electric field across the
membrane (see Fig 2C). For opening transition,
this fraction is given by d and for the closing
transition by 1 � d. Note that Figure 2C makes
the simplifying assumption that the gating
charge moves all the way from the inside to the
outside during opening. If it moved only part of
the distance, the effective gating valence
would be proportionally reduced. In Eqs. 17
and 18, at physiologic temperatures, the factor
kT/qe ~ 25 mV, and thus if V is measured in
millivolts, the previous equations can also be
written more simply as

a Vð Þ ¼ a0edzV=25 ð19Þ

b Vð Þ ¼ b0e� 1� dð ÞzV=25 ð20Þ
a form that for simplicity will be used in the
models described in the present article. In case
the temperature is considered an important
variable, the equations can be adjusted accord-
ingly. It can be seen that the gating of the
voltage-dependent 2-state system depends on
exactly 4 parameters: a0 and b0, the rate

constants at 0 mV; z, the gating valence; and
d, the relative electrical distance associated
with opening.

The steady-state voltage dependence of the
open probability turns out to be

PO Vð Þ ¼ a Vð Þ
a Vð Þ þ b Vð Þ ¼

1

1þ e
�z V�V1

2

� �
qe= kTð Þ

¼ 1

1þ e
�z V�V1

2

� �
=25

ð21Þ
where V1/2, the voltage of half-maximal activa-
tion (PO(V1/2) ¼ 0.5) depends only on a0/b0.
Importantly, PO(V) is independent of d. This
equation is also called a Boltzmann distribution,
because it fundamentally derives from the
classical Boltzmann statistics describing sys-
tems in thermodynamic equilibrium.

Relaxation time constants are given by

s Vð Þ ¼ 1

a Vð Þ þ b Vð Þ
¼ 1

a0edzV=25 þ b0e� 1�dð ÞzV=25
ð22Þ

Finally, the total predicted ion current of a
channel model depends of the possibly volt-
age-dependent single-channel ion currents
associated with each conducting state. For
the 2-state model, we will assume a linear
current voltage relationship characterized by
the single-channel conductance c and the
reversal potential Erev

i Vð Þ ¼ c V � Erevð Þ ð23Þ
To simulate a classical Kþ channel, we assume,

for example, Erev¼�80 mV, similar to a neuronal
potassium channel. Further properties of the 2-
state system will be discussed within the
MarkovEditor tool in the next section.

IV. THE TIME DEPENDENCE:
MACROSCOPIC AND
MICROSCOPIC RELAXATIONS

Tutorial 2 describes how to insert the 2-state
model into MarkovEditor, and in the following,
we will assume that this step is complete.
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We will verify if MarkovEditor reliably repro-
duces the previously described general prop-
erties and explore the dependence on the
various parameters of the model. Predictions of
model calculations are shown in the upper
panel on the left of MarkovEditor, and calcula-
tions are invoked by clicking on the
Calculate button. To simulate the temporal
development, either at the macroscopic or at
the single-channel level, we have to impose a
voltage protocol, emulating the typical stimu-
lation protocols used in electrophysiologic
measurements. MarkovEditor offers 2 alterna-
tive stimulation protocols:

(a) A simple protocol consisting of 3 stimula-
tion segments is defined in the General
Settings (see Tutorial 3 for a more
exhaustive description of the General
Settings).

(b) More complex stimulation protocols can be
defined by using the Pulse Generator
File paradigm, explained in more detail in
Tutorial 4.

Let us use the simple 3 stimulation segments
protocol to simulate the response of the 2-state
model to a single voltage step. For this, using
the menu item Settings-.Edit general
settings, we select NPulses¼ 1; sample
time ¼0.1; VHold ¼-100, t0¼tHold¼50;
V1¼-20, t1¼500; V2¼-80,t2¼200 (the
delta values are irrelevant if only a single
pulse is simulated). The corresponding settings
file 2States.set can be downloaded from
https://github.com/mikpusch/MarkovEditor.git.
This protocol is a standard pulse used to
examine the behavior of classical voltage-gated
ion channels. The holding voltage of �100 mV
is, on the one hand, close to the physiologic
resting membrane potential of many excitable
cells and, on the other hand, guarantees that
the initial open probability is relatively small
(for our 2-state system). To invoke the simula-
tion by MarkovEditor, we first select the radio
button Current in the Time course tab and
then click on the Calculate button to trigger
the calculation shown in the graph on the top
left (Fig 3A). The graph offers several display
options and data can be easily exported, as

described in Tutorial 5. We see that the initial
negative holding current at �100 mV is very
small, because the open probability is only
0.33%. Stepping the voltage to�20 mV leads to
an exponential increase of the outward potas-
sium current, which reaches almost steady state
during the 500-ms pulse. Upon returning the
voltage to �100 mV, the initial tail current is
relatively large, reflecting the initial sizable
open probability of 65%, reached at the end
of the preceding pulse to �20 mV, decaying
back to the holding current, again with an
exponential time course. Selecting the Prob
radio button, displays the time course of the
occupation probabilities of the closed state (in
black) and the open state (in red; not depicted).
By playing with the various options offered by
the stimulation protocols, the macroscopic
relaxations of the 2-state model can be
explored in an exhaustive manner.

V. STOCHASTIC SIMULATIONS
OF SINGLE CHANNELS

We next explore the stochastic response of a
single channel to the very same stimulation
protocol described previously. To render the
response more realistic, we artificially assign a
noise level to both the open as well as to the
closed state. This is done by double-clicking or
right-clicking on each state and assigning the
noise level (sigma). In this manner, the current
is associated with random noise with a
standard deviation defined here. Note that
before the setting of the noise, the user is
asked to enter the label of the state and the
current associated with it. This noise is typical
for single-channel recordings and reflects noise
caused by a finite seal resistance, amplifier
noise, or stray capacitance (11). For the closed
state, we select sigma ¼ 0.05 pA, whereas for
the open state, we select higher noise level of
0.1 pA, reflecting the observation of open
channel noise (15). Now, we select the radio
button Current from the Simulation tab.
Each time the Calculate button is clicked,
the program simulates and shows the response
of a single channel. As illustrated in Figure 3B,
the stochastic behavior of the channel implies
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Fig 3. Ensemble and stochastic time-dependent simulation. For the 2-state model, the response to a step depolarization to�20 mV from a
holding potential of �100 mV is calculated at the ensemble (i.e., deterministic) level (A), with the pulse protocol illustrated in red, in a
stochastic manner for a single channel (B), or in a stochastic manner for 1,000 channels (C). For the stochastic simulations (B and C), noise
levels of 0.05 pA (Gaussian white noise) for the closed state and 0.1 pA for the open state, respectively, were added to render the single-
channel events realistic.
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that the response is slightly different in the 3
simulations, even if the parameters are exactly
the same. For a quantitative understanding of
the behavior of the single channel, it might be
insightful to select a large number of pulses in
the General Settings dialog, export the
data, and perform single-channel analysis with
a program of choice. This procedure is also
helpful to assure the accuracy of any chosen
analysis procedure.

VI. COMPARING
DETERMINISTIC AND
STOCHASTIC PREDICTIONS

Another instructive exercise is to compare
the stochastic predictions of the model with
the macroscopic, deterministic behavior. To this
end, we can assign a large number of channels
to be simulated in the GeneralSettings
dialog, for example, No. Channels in
stochastic simulations ¼ 1000. Under
these conditions, the noisy appearance of the
stochastic prediction, compared with the de-
terministic one, is still visible, yet with 1,000
channels, the stochastic and the deterministic
predictions become almost superimposable
(Fig 3A,C). This kind of simulation can be
conveniently used to verify the accuracy of
programs used, for example, to perform non-
stationary noise analysis.

VII. EXPLORING THE 2-STATE
MODEL WITH MARKOVEDITOR
STEADY-STATE PROPERTIES

For the determination of steady-state prop-
erties, we have to specify the voltage-range
over which to perform the calculations. These
are inserted in the General Settings (see
Tutorial 3 for a more exhaustive description of
the General Settings). For example, we
can impose the voltage range over which to
calculate the steady-state properties to VLeft
¼ -100 mV, VRight ¼ 100 mV. As explained
in the following, MarkovEditor can visualize the
steady-state or time-dependent occupation
probability of up to 4 different states. The
states to visualize are defined by the

Probability Code variables of this dialog
(Prob 1, Prob 2, Prob 3, Prob 4), which
are set to states 0, 1, 2, and 3 by default but can
be changed to any value, in particular for
models with more than 4 states.

Now, selecting the I radio button under the
Steady state tab and then clicking on the
Calculate button will generate the graph
illustrated in Figure 4A, which shows the net
steady-state ion current predicted by the
model. As usual, the graph offers several
display options regarding the scaling of the
axis and data can be easily exported, as
described in Tutorial 5. The net steady-state
ionic current is calculated as the sum

Inet ¼
X

i

pici ð24Þ

where pi is the (steady-state) occupation
probability of state i and ci is the current
value of state i. Note that for the deterministic
predictions of channel properties, such as the
steady-state ion current discussed here, the
predictions for a single channel are calculated.
The number of channels defined in the
settings is not taken into consideration. The
number of channels is considered only for
stochastic simulations (see the previous dis-
cussion). For the 2-state potassium channel
model here, the current of the fully activated
channel follows a straight line for voltages
more positive than þ50 mV, as indicated by
the dashed red line in Figure 4A. At more
negative voltages, the current becomes pro-
gressively smaller, reflecting the reduced open
probability. This is more evident in Figure 4B,
which shows the voltage-dependent steady-
state occupation probability of the closed
state (in black) and the open state (in red),
respectively. This graph is selected by clicking
on the Po radio button. The Boltzmann
distributions describing the occupation of
the open and closed state, respectively, are
nicely visible. Remaining in the Steady
state tab, and clicking on the tau radio
button shows, on a logarithmic scale, the
voltage dependence of the relaxation time
constant (Fig 4C), in full agreement with Eq.
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Fig 4. Steady-state predictions of the 2-state model. Panel (A) shows the current–voltage relationship (I to V curve). The dashed red line
indicates the corresponding IV of a fully open channel. (B) The steady-state probabilities of the closed and open states are shown in black
and red, respectively. (C) The relaxation time constant in the voltage range between �100 and 100 mV is illustrated. (D) The results of
varying parameter a[0] (values 0.1, 1, 10) on the steady-state IV are shown.
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22. The cycle button applies only to models
with loops and will be discussed in the
following in the context of models that aim
to simulate transporters.

VIII. EXPLORING THE
PARAMETER SPACE WITH
VARY PARAMS

The predictions of any Markov model de-
pend on the topology of the model (not
discussed here) and on the rate constants
between states. To explore the behavior of
the model in a certain parameter space,
MarkovEditor offers the possibility to vary, in a
systematic manner, one or more parameters
within a certain range of values. The parame-
ters to vary and the range over which to vary
them are defined in the dialog window
Settings-.Edit vary which params.
As a first example we will vary the opening
rate constant at 0 mV, i.e., a0, in the range
between 0.1 and 10, in 3 steps in a logarithmic
manner, as detailed in Tutorial 6. Before
initiating the exploration, we select the I radio
button (i.e., to select Current to be calculat-
ed) in the Steady state tab and then click on
the Vary params button. The resulting graph
shows, superimposed with different gray-
scales, the I to V plots for the 3 different values
of the opening rate constant (indicated explic-
itly in a separate text box in the plot window),
as shown in Figure 4D. Clicking on the Po radio
button, results in the display of the corre-
sponding occupation probabilities, nicely illus-
trating that the voltage of half-maximal
activation depends on the rate constants in
an exponential manner (not depicted). Similarly
instructive is the illustration of the dependence
of the relaxation constant on the opening rate
constant (not depicted).

Another important parameter to explore is
the apparent gating valence encoded by in
parameter a[2]. For example, setting the range
between 1 and 4, in steps of 0.5, nicely
illustrates the dependence of the steepness of
the popen(V) curve on the gating valence (not
depicted).

IV. EXPLORING THE 2-STATE
MODEL WITH MARKOVEDITOR:
THE POWER SPECTRUM

The noise associated with the random
fluctuations of the channel between open and
closed states contains useful information (16).
This information can be extracted by measuring
and expressing the noise in terms of the power
spectrum, as explained in detail in (17, 18). In
MarkovEditor, the power spectrum can be
calculated by choosing the respective radio
button. Explicit formulas for the power spec-
trum are shown in a text window. The spectrum
will be calculated for different voltages, as
defined by the first segment of the simple pulse
protocol in the general settings dialog. For
example, setting

V /cl ¼�60
delta V / cl ¼ 0
NPulses ¼ 5

spectra will be calculated for �60, �40, �20, 0,
and 20 mV. The 2-state model shows a typical
single Lorentzian dependence on the frequen-
cy (not depicted). The cut-off frequency of the
spectrum corresponds to the inverse time
constant of the macroscopic relaxation. Note
that the spectra calculated by MarkovEditor do
not take into account the sigma values
associated with the single-channel currents.

X. SINGLE-CHANNEL BEHAVIOR
IN MORE DETAIL: THE DWELL-
TIME DISTRIBUTIONS AND THE
SIMPLEST LIGAND ACTIVATED
CHANNEL

A standard analysis of single-channel record-
ings consists in the construction of the
distributions of the dwell times in the various
conductance states. The dwell-time distribu-
tions are then fitted with the sum of exponen-
tial functions. The number of exponential
components needed to satisfactorily describe
the distribution provides the number of states
underlying the respective conductance state.
For example, a single exponential distribution is
indicative of a single state, a double exponen-

Markov models

Zifarelli et al. The Biophysicist 2021; 2(1). DOI: 10.35459/tbp.2019.000125 83

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-02 via free access



tial distribution indicates 2 states with the same
conductance level (10). To illustrate this behav-
ior, we will create a 3-state model, with 2 closed
states and 1 open state. To render the model
even more related to real life, we will interpret
it in terms of a ligand activated channel, as
illustrated in the following scheme:

U
!k L½ �

 
l

B
!a

 
b

O ð25Þ

Ligand L binds to the unliganded state U
with rate constant k[L], where [L] is the ligand
concentration and dissociates from bound state
B with rate constant l. The bound state opens
with rate constant a and the open state O
closes with rate constant b. The model is
entered in MarkovEditor as explained in Tutorial
7. To become acquainted with the model, we
will first explore its macroscopic steady-state
and kinetic properties. The ligand concentra-
tion [L] is encoded in the independent variable
c, playing an equivalent role as the voltage in
voltage-gated channels. Having defined the
range of [L] in the general settings, as described
in Tutorial 7, we can now calculate the dose-
response behavior by using the Steady State
tab and responses to concentrations steps by
using the Time Course tab. Note that the
maximal open probability reaches only 50% at
saturating ligand concentration.

We next simulate single-channel behavior in
steady state at a fixed ligand concentration, for
example a low concentration of 0.1 mM. To this
end, we set all concentrations of the simple
stimulation protocol (see Tutorial 3) to the
same value 0.1, select 1 pulse, and a sample
time of 1 ms. To achieve a long simulation time
of 100,000 ms, we set the duration of segment
1 to 100,000 (this field is denoted t1 (ms)) in
the General Settings dialog. (The corre-
sponding settings file LigandGatedDwell
TimeDistribution.set can be found on
https://github.com/mikpusch/MarkovEditor.
git). Now selecting the Current radio button
in the Simulation tab and clicking on
Calculate will produce a simulated single-
channel trace, which should show typical bursts
of openings, separated by long shut intervals,

as illustrated in Figure 5A. Indeed, such bursts
are encountered frequently in real single-
channel recordings (11). We do not attempt
to define precisely the term burst here but will
use this example to illustrate the concept of
dwell-time distributions.

Selecting the tab Dwell Times and clicking on
Calculate will invoke the calculation of
theoretic steady-state dwell-time distributions
of the closed states and of the open states,
respectively. These will be calculated at differ-
ent concentrations or voltages, as defined by
the first segment of the simple pulse protocol
in the general settings dialog. For example,
setting

V /cl ¼ 0.1
delta V / cl ¼ 0.9
NPulses ¼ 2

dwell-time histograms will be calculated for c¼
0.1 and for c¼1, as illustrated in Figure 5B. (The
corresponding settings file LigandGated
DwellTimeDistribution.set can be
found on https://github.com/mikpusch/
MarkovEditor.git.) The cumulative distributions,
Pcum(t), provide the probability that a dwell
time is longer than time t. By definition, Pcum(0)
¼ 1 and Pcum(t) decreases monotonically for
longer times. The cumulative dwell-time distri-
bution can be used to calculate the probability
that a dwell time lies in a certain time range [t,
tþDt] by the formula Prob(duration of
event in range [t, tþDt])¼ Pcum(t)-
Pcum(tþDt), which is the basis for fitting
dwell-time histograms, as shown in Figure 1C.
In MarkovEditor, the text window in the top
middle shows the analytic expressions for the
dwell-time distributions. Note that the dwell-
time distribution of the open state is a single
exponential (with time constant 1/b), whereas
the closed time distributions are double
exponential, with time constants (and coeffi-
cients) that depend on the remaining rate
constants and the ligand concentration. Note
that the theoretic dwell-time distributions
assume infinite time resolution, i.e., that all,
even the shortest events are detected. In
reality, often the missed events problem is far
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Fig 5. Ligand gated channel and dwell-time distribution. (A) A single-channel simulation of a simplified 3-state model for a ligand gated ion
channel at a low ligand concentration (0.01 mM) is presented. The channel can be unbound (state U), bound (state B), and open (state O),
as depicted in the lower panel. Bursts define ligand bound states during which the channel fluctuates between open and closed states. In
(B) the cumulative dwell-time distributions of the 2 conductance levels (closed: black curve, representing states U and B; open: red curve,
representing state O) are shown for 2 different concentrations, as defined in the general settings (see main text). The text window provides
the analytic formula of the corresponding distributions. See (11, 19, 20) for details on single-channel analysis.
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from being negligible. See (19–22) for more
details on single-channel analysis.

XI. A COMPLEX MODEL OF A
VOLTAGE-GATED SODIUM
CHANNEL: IONIC AND GATING
CURRENTS

To show the capability of MarkovEditor to
deal with realistic models, we will illustrate the
behavior of a model of voltage-gated Naþ

channels described by Patlak (23). At the same
time, this section will serve to introduce the
possibility to enter, share, and edit models by
using a text-based interface. Gating of voltage-
dependent Naþ channels involves (at least), 2
processes: activation and inactivation, leading
to transient activation of Naþ currents upon
voltage steps. In the classical Hodgkin–Huxley
model, full activity is achieved by the simulta-
neous activation of 3 m gates, whereas
inactivation is modeled by a single h gate,
leading to a rather complicated model with
several closed and inactivated states. For a
more detailed introduction the reader is
referred to (23, 24). In particular, the model
we will consider is Model 7 of (23), which is
inserted into MarkovEditor, as illustrated in
Tutorial 8. This should result in a model display,
as shown in Figure 6A (do not forget to save
the model in a file to store the work done).
Before going into more detail, note that
parameter w[0] of the model simply serves to
encode the prefactor, kT/h, used by (23) to scale
all rate constants (h is the Planck constant, h¼
6.63 3 10�34 Js).

This model harbors a novel feature not
discussed so far: functions. Functions are not
strictly necessary, but they make life easier in
certain cases. Functions conceptually differ
from variables in the following way: variables
are evaluated exactly once (and in order from
w[0], w[1], and w[2]) when transition rates and
state currents need to be calculated. On the
other hand, functions are evaluated only when
explicitly called within variable or state current
expressions or from other functions and can be
called multiple times (note that nonterminating

recursive function calls will result in program
block).

The function func[0] in the model has been
introduced to implement a restriction, pro-
posed by Patlak (23), on the maximum value of
rate constants to avoid unphysically large rate
constants at extreme voltages caused by the
exponential voltage dependence of the expres-
sions for the various rate constants (w[1]
through w[8]). Slightly differently from the
original Hodgkin and Huxley equations, Patlak
used the expression

1

effective rate
¼ 1

calculated rate

þ 1

maximum rate
ð26Þ

that is implemented in

func 0½ � xð Þ ¼ x � a 13½ �
x þ a 13½ � ð27Þ

which returns the effective rate, given the
calculated rate x, and the maximum rate as set
in parameter a[13] (set to 20,000 s�1 in the
model). As can be seen in the model definition
(Fig 6A and Tutorial 8), func[0] is applied to
every single rate constant connecting the
various states. This example highlights the
advantage of using a reusable function in
simplifying complex expressions, and it will be
used in the following for the prediction of
gating currents.

Similar to the 2-state model described in the
first paragraphs, the open channel current is
given by

i Vð Þ ¼ 0:01 � V � 50ð Þ ð28Þ
to emulate a single-channel conductance of
0.01 nS (10 pS) and a positive reversal potential,
leading to excitatory inward currents at phys-
iologic voltages. Predictions of macroscopic
and single currents upon typical voltage
protocols are shown in Figure 6B,C.

In addition to the ionic currents, MarkovEdi-
tor provides the possibility to simulate so-called
gating currents without any further modifica-
tion of the model. Gating currents (25) arise
from the movement of charges within the
membrane upon changes of the membrane
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Fig 6. A complex voltage-gated sodium channel. (A) An example of the text-based method to enter a model, as explained in Tutorial 8, is
shown. (B) Ensemble response to a typical IV protocol consisting of 20-ms steps to voltages ranging from �60 to þ60 mV (in 10-mV
increments), from a holding potential of�90 mV (the corresponding settings file NaChannelIV.set can be found on https://github.
com/mikpusch/MarkovEditor.git). (C) A single channel simulated for a 20-ms pulse to 0 mV (holding potential�90 mV). (D) Ensemble gating
currents. (E) Stochastic gating current response to a voltage step to 0 mV (holding potential �90 mV) simulated for 50 channels.
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potential. They are of capacitive nature (i.e.,
transient). For voltage-gated cation channels,
the major part of the gating currents is
mediated by the movement of the charged
S4 segments (25), which leads to channel
opening. In fact, the voltage dependence of
the rate constants arises directly from these
charge movements. Each time a voltage sensor
moves outward, a tiny shotlike outward current
event occurs, whose charge (i.e., time integral
over the current) is equal to the effective
charge movement. When the voltage sensor
moves back inward, a similar inward ‘‘shot’’
current event is generated. On the other hand,
these charge movements are the basis of the
exponential voltage dependence of the rate
constants (see Fig 2C). With these assumptions,
the average gating current can be calculated
using the rather complicated expression

Igating

¼ qe

X
i

pi

X
j 6¼i

rate constant i ! jð Þzij

 !

ð29Þ
where, as in Eqs. 16–18, zij is the gating valence
conferring the voltage dependence to the
transitions between stats i and j (zij ¼ �zji),
and pi is the probability to reside in state i. The
concepts underlying the considerations leading
to Eq. 29 are beautifully described in (25).
Fortunately, MarkovEditor determines in a
completely automatic manner the gating va-
lences and all other parameters needed (see
section XIX), allowing a straightforward predic-
tion of gating currents.

Just 2 simple steps are needed to instruct
MarkovEditor to calculate gating currents (in-
stead of the standard ionic currents):

First, we have to check the checkbox Use
transporter/gating current and un-
check the checkbox Use channel current.

Second, we have to insert the string auto as
the Transporter/gating current
function meaning that gating currents are
automatically determined by using Eq. 29.

Alternatively, we could insert manually any
expression for the Transporter/gating
current function. This alternative mode

of inserting the gating current function can be
useful to explore any specific property of a
model and is explained in Tutorial 9.

Macroscopic gating currents for the Patlak
Naþ channel model are shown in Figure 6D,
illustrating typical features, such as a rising
phase at certain voltages. This feature differs
from the predictions of the original Hodgkin–
Huxley model, for which gating currents should
be a decaying exponential function (23).
Another feature correctly reproduced by the
model of Patlak is charge immobilization, which
is visible in the asymmetry between on- and
off-gating currents (25). To better understand
the nature of gating currents, it is also
instructive to simulate them at the stochastic
level, as illustrated in Figure 6E. Each time the
channel undergoes a transition, a spikelike
gating current, which cannot be resolved in
normal patch-clamp measurements, is generat-
ed. Analysis of the nonstationary noise associ-
ate with gating currents has been used by
Conti and Stühmer (26) to obtain direct
experimental evidence for the quantal charac-
teristic of gating currents.

XII. VARIATION OF A
PARAMETER: INSIGHT INTO
POTENTIAL DISEASE
MECHANISMS

Voltage-gated sodium channels play a role in
most excitable cells (neurons, skeletal, muscle,
heart, and endocrine cells) and defects in the
respective encoding genes lead to a plethora of
human genetic diseases (27, 28). A rather
frequent phenotype of disease causing muta-
tions is the appearance of so-called ‘‘persis-
tent’’ currents, or more generally, defects that
render the inactivation process less efficient;
see (29–31). For example, the mutation T1313M
in the muscle Nav1.4 channel causes paramyo-
tonia congenita and is associated with signifi-
cant persistent currents, shifted voltage
dependence of inactivation, and faster recovery
from inactivation (29). MarkovEditor allows us
to develop hypotheses about the molecular
mechanisms underlying such a functional
defect, as illustrated in Figure 7. We concen-
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Fig 7. Simulation of a disease phenotype – disruption of fast inactivation in a mutation of the Naþ channel causing paramyotonia
congenita. Panels (A and B) show predictions of macroscopic currents of the WT Patlak model (i.e., with a[9]¼-26.5, resulting in
w[7]¼19.3s-1 at 0 mV) or a mutant model (i.e., with a[9]¼-25.5, resulting in w[7]¼52.6s-1 at 0 mV) by using the voltage
clamp protocol shown in the inset in (A). The steady-state inactivation protocol is also contained in the pgf Pulses.pgf, which can be
downloaded from https://github.com/mikpusch/MarkovEditor.git. The ellipses in (A and B) highlight the test currents elicited by a 10-mV
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trate on the single parameter ah0, which is the
rate constant important for recovery from
inactivation. The value of ah0 is determined by
parameter a[9] and calculated in variable w[7]
in the model (see Tutorial 8). For wild-type
(WT), a[9]¼ -26.5, which via variable w[7]¼
exp(w[0] þ a[9] - a[11]*(1-a[12])*v/
25) results in ah0 (i.e., at 0 mV) ~ 19.3 s�1. To
increase ah0 e-fold, i.e., by a factor of 2.71, we
set a[9] ¼ -25.5, resulting in ah0 ~ 52.6 s�1.
This simple maneuver leads to a number of
changes. Figure 7A,B show the response of WT
channels and mutated channels to a typical
voltage-protocol used to measure steady-state
inactivation. Clearly, the mutated channels
exhibit much larger persistent currents. After
the long pulses to various voltages, channel
availability is measured by a final test pulse to 0
mV, and the resulting (absolute) peak values
are plotted in Figure 7C as a function of the
conditioning voltage. The solid lines are fits
with a Boltzmann distribution. The mutant data
are slightly shifted to more positive voltages.
Finally, Figure 7D and E illustrate the response
to a typical protocol used to measure the speed
of recovery from inactivation. After a 70-ms
inactivating prepulse, the membrane voltage is
kept at�90 mV for increasing time, and channel
availability is measured by a test pulse to 0 mV.
WT channels recover in a monoexponential
manner (gray line in Fig 7D) with a time
constant that is 3 times slower than mutant
channels (red line in Fig 7E). This is just a simple
example of how MarkovEditor can be used to
glean mechanistic inside into the effect of
disease-causing mutations.

XIII. A SIMPLE ELECTROGENIC
UNIPORTER

Even though initially designed to model ion
channels, MarkovEditor is well capable of

simulating even complex transporters, both at
the steady-state level, and in terms of transient
currents, which is relevant for electrogenic
transporters. This will be illustrated here using
a simple electrogenic uniporter, described by 4
states, as illustrated in Figure 8. The uniporter
can expose its binding site either to the outside
(upper states) or to the cytosol (lower states).
The conformational change between these
configurations is assumed to be intrinsically
voltage dependent (indicated by the move-
ment of the ‘‘green’’ negative charge in Fig 8),
and translocation of the positively charged
substrate confers an additional voltage depen-
dence to the loaded transporter. Binding and
release of substrate may also be voltage
dependent. For example, this is the case for
Naþ binding in the Na–K–ATPase (32). This
specific transporter model incorporates several
features highlighted and investigated by re-
searchers (33–35). The model can be inserted
into MarkovEditor using the text-based meth-
od, as detailed in Tutorial 10. Alternatively, the
model file Uniporter.mod can be down-
loaded from https://github.com/mikpusch/
MarkovEditor.git. Regarding the equations and
symbols depicted in Figure 8, the parameters of
the model are used with the following conven-
tions:

a[0]: d4, effective valence of the charge
associated with the conformational change
from outside to inside, independent of
substrate binding. The parameter combines
both the actual charge as well as the
electrical distance associated with the charge
movement into a single number. In effect, for
a complex protein, the simplification consists
in replacing by a single effective valence the
movement of diverse charges and dipole
moments in the apoprotein during its
structural transition. The value of a[0] is

 
test pulse. The respective (absolute) peak–current values are plotted in (C) together with fits of a Boltzmann function (lines). (D and E)
Results for a typical experiment were aimed at measuring the speed of recovery from inactivation. After a long (70-ms) depolarization to
inactivate most channels, the membrane potential is returned to�90 mV for increasing duration, followed by a test pulse to 0 mV. The
recovery protocol is also contained in the pgf Pulses.pgf, which can be downloaded from https://github.com/mikpusch/MarkovEditor.
git. The gray and red lines in panels (D and E) are fits of single exponential functions to the peak currents with tau¼ 31.1 ms (WT), and tau
¼ 11.1 ms (mutant), respectively.
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negative to emulate a negative intrinsic

charge!

a[1]: d1, electrical distance of the binding site

exposed to the outside.

a[2]: d3, electrical distance associated with

moving of substrate from outer open state

to inner open state.

1-a[1]-a[2]: d2, electrical distance of the

binding site exposed to the inside.

a[4]: a0, rate constant (at 0 voltage) of

conformational change from outside expos-

ing to inside exposing binding site of empty

transporter.

a[6]: a1, rate constant (at 0 voltage) of

conformational change from outside expos-

ing to inside exposing binding site of loaded

transporter.

a[7]: b1, rate constant (at 0 voltage) of

conformational change from inside exposing

to outside exposing binding site of loaded

transporter.

a[8]: koff
int ¼ koff

ext, unbinding rate constant of

substrate (at 0 voltage) of substrate to inside

or outside, assumed to be equal.

a[9]: kon
int¼ kon

ext, association rate constant of

substrate (at 0 voltage) of substrate from

inside or outside, assumed to be equal.

a[32]: cext, extracellular substrate concentra-

tion.

a[33]: cint, intracellular substrate concentration.

Fig 8. A 4-state electrogenic uniporter. The outwardly oriented empty transporter (state Out 0) binds the positively charged substrate (red
circle) from the outside, with a voltage dependence given by the electrical distance d1 (state Out 1). The conformational change from
outwardly oriented binding site (upper states) to the inwardly oriented site (state In 1) is associated with an intrinsic voltage dependence
(green sphere, electrical distance: d4; see main text for the simplification underlying this concept of intrinsic charge). For the loaded
transporter, the transfer of the charged substrate adds to the voltage dependence, (electrical distance: d3). Binding and release of substrate
from the inside is associated with the electrical distance d2 (state In 0). The expression of the rate constants explicitly shows the exponential
voltage dependence. Note that for simplicity, we impose symmetrical electrical barriers for ligand binding and structural transitions resulting
in the ‘‘. . ./(2 kT)’’ expression in all exponentials.
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Note that for simplicity (to reduce the
number of parameters), the affinity of the
outwardly oriented binding site is assumed to
be identical to that of the inwardly oriented
binding site.

An extremely important aspect regarding
models of transporters, or more generally
models involving loops or cycles, is the second
law of thermodynamics and the impossibility to
construct a perpetuum mobile. For example, for
the uniporter model the following sequence of
state occupancies

Out 0 � Out 1 � In 1 � In 0 � Out 0

would represent a clockwise cycle of transport
corresponding to an inward transport of a
substrate molecule. However, to achieve a
completed inward transport cycle, the trans-
porter may go back and forth between states
several times. Therefore, also the following
sequence of state occupancies would be a
clockwise cycle associated with the inward
transport of a substrate molecule:

Out 0 � Out 1 � In 1 � Out 1 � In 1 � In 0
� In 1 � In 0 � Out 0.

By analogy, out of many possible cycles, the
inverted sequence of the previous cycle

Out 0 � In 0 � In 1 � In 0 � In 1 � Out 1 �
In 1 � Out 1 � Out 0

represents an anticlockwise cycle, correspond-
ing to the outward transport of a substrate
molecule. To be physically realistic, Markov
models have to obey the second law of
thermodynamics. This implies that in condi-
tions of thermodynamic equilibrium, no net
cycling can occur for any cycle of the Markov
scheme. This means that, on average, the
number of cycles completed in the clockwise
direction has to be identical to the number of
cycles completed in anticlockwise direction
(36). Otherwise, the transporter would be able
to accumulate substrate on one side of the
membrane without external energy input. This
principle is also called microscopic reversibility
and applies only to equilibrium conditions. In
case of the electrogenic uniporter discussed
here, equilibrium conditions are zero trans-

membrane potential and equal substrate con-
centrations on the inside and on the outside.
Fortunately, this constraint can be easily
incorporated into the model because it is
equivalent to the requirement that, for each
cycle, Y

clockwise

rate constants

¼
Y

anticlockwise

rate constants ð30Þ

i.e., that the product of rate constants in the
clockwise direction of each cycle is equal to the
product calculated in the anticlockwise direc-
tion (36). In equilibrium conditions, i.e., V¼0,
cext¼cint, for the uniporter model, the previ-
ously mentioned condition translates into

kext
on a1kint

offb0 ¼ kint
onb1kext

off a0 ð31Þ
Because we assumed the binding or unbind-

ing properties to be equal for both inward- and
outward-facing configurations of the transport-
er, the constraint can be simplified and
reformulated as

b0 ¼
a0b1

a1
ð32Þ

This has been incorporated in the model in
that variable w[1] is calculated as

w 1½ � ¼ a 4½ � � a 7½ �=a 6½ � ð33Þ
which is then used to calculate b0.

After these lengthy, but important consider-
ations we are almost ready for the predictions
of the uniporter model. To calculate the current
generated by the model, we have to check the
checkbox Use transporter/gating
current and uncheck the checkbox Use
channel current, and we have to insert a
valid Transporter/gating current
function. As for the gating currents of the
voltage-gated sodium channel model, the
easiest choice for this is auto, which derives
the charge translocation steps from the voltage
dependence of the rate constants.

Importantly, it is possible to insert any
s y n t a c t i c a l l y v a l i d f u n c t i o n a s t h e
Transporter/gating current function,
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allowing the analysis of every aspect of the
model.

For example, for a single-cycle model as the
uniporter model, the net cycling frequency is
proportional to the net transport activity, which
can be expressed as

p 2½ � � w 5½ � � p 0½ � � w 7½ � ð34Þ
Here, p[2] is the (time-dependent) occupa-

tion probability of state 2, and w[5] the rate
constant of transitions from state 2 (outside
oriented, substrate bound) to state 0 (outside
oriented, no substrate bound, ‘‘apo’’). Thus,
the product p[2]*w[5] is the effective rate of
transitions from state 2 to state 0. Similarly, the
product p[0]*w[7] is the effective rate of
transitions from state 0 to state 2. For any
cyclic scheme, the difference of such rates of
neighboring states provides the net cycling
frequency in steady-state conditions (36).
Thus, Eq. 34 can be used alternatively as the
Transporter/gating current function
for the purpose of steady-state calculations.
However, with this equation, not all the
transitions contributing to the transient cur-
rents are correctly taken into account resulting
in errors in the calculation of transient (or
presteady-state) currents, as well as the power
spectrum. Therefore, for the electrogenic
uniporter discussed here, we will stick to the
choice of auto for the Transporter/
gating current function.

In addition to microscopic reversibility, care
has to be taken in assigning the correct voltage
dependence to each rate constant to maintain
a correct treatment of net inward versus
outward charge movement. For the electro-
genic uniporter model, the formal correctness
of the equations can be checked by assuring
that the calculated reversal potential corre-
sponds to the Nernst potential (6). At the
Nernst potential, outwardly directed transport
cycles occur at the same (average) frequency of
inwardly directed transport cycles. An uphill
transport of the substrate against the electro-
chemical equilibrium in the absence of an
external energy input would violate the ther-
modynamic laws. The Nernst potential is given
by

Erev ¼
kT

qe
ln

cext

cint

� �
’ 25 mV ln

cext

cint

� �
ð35Þ

(at room temperature kT/qe ~ 25 mV). We will
perform this test in a first exercise. We assign

a[32] ¼ 10 ¼ cext and a[33] ¼ 1 ¼ cint.

Inserting these 2 concentrations into Eq. 35
yields a theoretic reversal potential of Erev¼ 25
mV3ln(10) ¼ 57.6 mV. To simulate the steady-
state IV relationship, we check the I radio
button in the Steady State tab and click on the
Calculate button, which should result in the
display of the steady-state IV as shown in
Figure 9A. Exporting the data to a spreadsheet
(via right-clicking on the graph) allows to verify
that the simulated data closely follow the
predicted reversal potential.

The Vary params feature allows us to
investigate the dependence of transport on
intracellular and extracellular substrate concen-
tration, as well as on all other parameters. As an
example, Figure 9B illustrates the effect of
varying the intrinsic charge associated to
transport function (d4 in Fig 8).

XIV. PRESTEADY-STATE
CURRENTS OF THE UNIPORTER

Upon abrupt changes of the membrane
potential, the initial relaxation of the trans-
porter toward a new steady-state condition, as
exemplified in Eq. 11 for the 2-state model,
results in transient or presteady-state currents,
before reaching the steady transport level. In
this case, we use auto as the Transporter/
gating current function and the current
relaxations faithfully reflect the predicted
transient (and steady-state) currents of the
model, as all transitions are taken into
account. These transient currents provide
important information on the transport mech-
anism, but they are often difficult to measure
because they are partially masked by the
capacitive currents associated with the charg-
ing of the cell membrane capacitance. In
specific cases, this problem can be partially
circumvented by comparing the transient
currents in the presence and in the absence
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Fig 9. Predictions of the uniporter. (A) Steady-state IV calculated between�100 andþ100 mV with extracellular concentration of the substrate,
cext¼ 10 mM, intracellular concentration, cint¼ 1 mM. (B) The effect on the steady-state IV of varying the intrinsic gating charge (green sphere
in Fig 8) between�1 andþ1 is encoded by the parameter A[0]. (C) Transient ensemble currents were calculated for a step from a holding
voltage of�100 to 100 mV (20 ms), followed by repolarization to�100 mV. (D) Power spectra of the transporter at�100, 0, andþ100 mV and
with cext¼ 10 mM, cint¼ 1 mM both graphically (on double logarithmic scale), as well as explicit formula (in gray textbox).
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of the substrate (37). For the 4-state uniporter
investigated here, typical ideal transient cur-
rents are illustrated in Figure 9C.

XV. THE TRANSPORTER
SPECTRUM

In any condition, even at thermodynamic
equilibrium, the electrogenic stochastic tran-
sitions of the transporter, which might be
either substrate binding or unbinding events,
or conformational changes, are associated
with tiny spikes of the electric current, as
already discussed in the framework of the
gating currents of the sodium channel. For a
given Markov model, the power spectrum of
the noise generated by these transitions can
be predicted in an explicit manner (34, 35). In
principle, the power spectrum could provide
important information on the underlying
transport mechanism, but, unfortunately, ex-
perimentally the power spectrum is difficult
to measure in real life. In MarkovEditor, the
spectrum will be calculated for different
voltages, as defined by the first segment of
the simple pulse protocol in the general
settings dialog. For example, setting

V /c1 ¼ �100
delta V / c1 ¼ 100
NPulses ¼ 3

spectra will be calculated for �100, 0, and 100
mV. MarkovEditor visualizes the power spectra
at these voltages, both graphically as well as in
analytic formulas. The typical spectrum of a
transporter is qualitatively different from that of
a channel because of the shot noise properties
of the electrical events associated with trans-
porter activity. The examples for the uniporter,
shown in Figure 9D, are calculated at �100, 0,
and 100 mV with cext¼ 10 mM, cint¼ 1 mM. The
spectra rise from a low-frequency limit to a
high-frequency limit with 3 separate Lorentzian
components. The correctness of the theoretic
spectra can be verified by stochastic simulation
of a large number of transporters and calcula-
tion of the power spectrum on the exported
data.

XVI. CYCLING FREQUENCY OF
THE UNIPORTER

For transporters, and more general, for all
Markov models that contain closed loops, the
frequency of clockwise and anticlockwise cy-
cling is an interesting property. For example, as
noted previously, in thermodynamic equilibri-
um, these 2 cycling frequencies have to be
equal. For a transporter with a single cycle, as
the 4-state uniporter, the difference in clock-
wise and anticlockwise cycling frequency de-
termines the effective transport rate. Using the
method of Hill (36), MarkovEditor is able to
calculate the clockwise and anticlockwise cy-
cling frequencies for each cycle. The cycle to be
calculated has to be chosen by clicking on
Select cycles. For the uniporter model,
only a single cycle is present. After the
selection, checking the radio button cycle
and clicking on Calculate, will produce the
clockwise (in red) and anticlockwise (in black)
cycling frequencies (in units of s�1; Fig 10A). At
the reversal potential, these 2 frequencies are
equal. Note that for models with a large
number of cycles, the algorithm used is not
very efficient.

XVII. SINGLE TRANSPORTER
SIMULATIONS

At present, the electrical current associated
with single transporters is beyond experimental
resolution. However, single-molecule fluores-
cence techniques have been used to follow
conformational changes of certain, rather slow
bacterial transporters (38). The simulation of
single transporter activity can thus provide a
guide to interpret single-molecule measure-
ments. MarkovEditor can, on one hand, simu-
late the single transporter electrical activity, as
illustrated in the section on gating currents of
the voltage-dependent sodium channel. This
feature will be used in XVIII section to validate
the calculation of the power spectrum of
transporter generated currents.

On the other hand, the following trick can be
used to visualize the stochastic behavior of a
single transporter molecule. To follow the
transitions of a single transporter in time, we
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Fig 10. Cycling of the uniporter. (A) Cycling frequency of the uniporter as a function of voltage in asymmetric conditions (cext¼ 10 mM, cint¼ 1
mM). The red line shows the (average) absolute frequency (in s�1) of completed clockwise cycles, corresponding to inward substrate transport,
whereas the black line indicates anticlockwise cycle frequency. Note that the cycling frequencies are identical at the Nernst potential of 57.6 mV, at
which, consequently, no net transport occurs. (B) To follow the state sequence during the stochastic simulation, fictitious current values have been
assigned to each state. With this trick, the irreversible net clockwise cycling at�100 mV and with cext¼ 10 mM, cint¼ 1 mM is nicely visible at the
level of a single transporter.
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artificially assign a distinct current value to each
state. In this way, the simulated current trace of
a single transporter of the transporter will
reflect the transitions between the various
states. In the example illustrated in Figure 9D,
we chose the following values:

3 for state Out 0
2 for state Out 1
1 for state In 0
0 for state In 1

Furthermore, we uncheck the checkbox Use
transporter/gating current and check
the checkbox Use channel current, to
visualize the fake specific-state associated ion
currents. Then, assigning asymmetric ion con-
ditions and simulating (e.g., for 100 ms), Figure
10B clearly illustrates the net clockwise cycling.
The trace shows a clear asymmetry regarding
the direction of time. In equilibrium conditions
(e.g., at the Nernst potential), no statistical
method should be able to distinguish the time-
reversed signal from the ordinary signal. In this
context, an instructive example is the single-
channel analysis of Richard and Miller of the
Torpedo chloride channel, which revealed that
channel gating is not at thermodynamic
equilibrium (39).

XVIII. VISUAL SIMULATION OF
A SINGLE TRANSPORTER

An alternative way to explore the behavior of
a single channel or transporter is provided by
the visual simulation. With this feature, the
time-dependent simulated stochastic behavior
of a single channel, calculated according to the
simple protocol defined in the General Settings,
is visualized in a time-dependent manner by
highlighting the actually occupied state in red
and the previously occupied state in blue (see
Fig 10C). Furthermore, the previously occupied
state and the currently populated state are
connected by a colored arrow. The frame rate
at which the simulation is reproduced is
defined by the time step in visual
simulation in the General Settings. In other
words, each time step of the simulation
(defined by the sample time) is going to be

visualized on screen for the duration defined by
the time step in visual simulation (the
settings file UniporterVisualSimula
tion.set can be downloaded from https://
github.com/mikpusch/MarkovEditor.git) In par-
allel, the graph in the upper pane shows the
current time point of the simulation protocol.
The currently active protocol value is shown as
a number, and a small colored arrow indicates
the progress through the protocol. To invoke
the visual simulation, select Visual in the
Simulation tab and click Calculate. To
interrupt an ongoing visual simulation, simply
click on the Interrupt button or click again
on Calculate. It may happen that the colored
arrow is connecting states for which no direct
transition is actually permitted. This behavior is
possible if, during a single sample period, more
than one transition occurs. In fact, as described
in section XIX, such missed events are realisti-
cally modeled in MarkovEditor. The visual
simulation is not limited to transporter models
but is applicable to every type of model.

XIX. METHODS
A. Method of deterministic numeric
simulation

The Markov model is defined by a number of
states N, connected by voltage-dependent rate
constants rij for transitions from state i to state j.
For deterministic simulations, the time-depen-
dent occupation probabilities pi(t) are governed
by the differential equations

dpi

dt
tð Þ ¼

X
i 6¼j

pjrji � pi

X
i 6¼j

rij ¼
X

j

pjqji

ð36Þ
defining the Q matrix given by the components
qij. The program can handle up to 100 states.
Stationary occupation probabilities are denoted
by pi for state i and are calculated by standard
matrix inversion. For temporal analysis, the
(possibly complex) eigenvalues and eigenvec-
tors of the Q matrix in MarkovEditor are
determined by using the ALGLIB C library
(http://www.alglib.net). For nonconstant seg-
ments (i.e., ramp, sine, wave; see Tutorial 6),
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numeric solution is performed by using an
eighth-order Dormand–Prince integration algo-
rithm (40). This may lead to slow execution in
case of complex models.

For ion channel models, each state i is
associated with a voltage-dependent current ci.
In the tool described here, an arbitrary voltage-
dependent function can be assigned for the
current of each state. A common simplified
assumption is that the open channel current
depends in a linear manner on the membrane
voltage. For example, for a 50-pS channel with
an assumed reversal potential of �30 mV, a
suitable function to describe the open channel
current is given by 0.05 3 (v þ 30) with the
implicit convention to measure voltage in
millivolts and current in picoamperes.

For closed states, the current function should
be 0. In addition to the current for each state,
the simulation program also provides the
opportunity to assign a noise level for each
state (given as the standard deviation in
picoamperes). This is only used for the stochas-
tic simulation of a discrete number of channels
(see the following).

Having assigned the microscopic current ci

for each state i, the predicted channel current,
Ichan, in the deterministic mode, is given by

Ichan tð Þ ¼
X

i

pi tð Þci ð37Þ

B. Transporter and gating currents
In addition to the open channel current, ci,

transitions between states may be associated
with a charge movement reflecting for example
gating charge movement in voltage-gated
channels or, more general, any electrogenic
step in a transporter or channel. On a
microscopic scale, these electrogenic steps
correspond to a current spike, idealized by a
delta function, whose time integral is given by
the charge moved in the step. On a macro-
scopic, deterministic scale, the electrogenic
steps produce an average, transient current
Itrans, given by

Itrans tð Þ ¼
X

i; j

pi tð ÞrijQij ð38Þ

where Qij is the charge moved upon the
transition from state i to state j.

Within MarkovEditor, there are 2 different
ways to calculate Itrans:

(a) In the most general manner, it is possible to
explicitly define a function, called the
Transporter/gating current function, used to
calculate Itrans, as illustrated for an example
in the Tutorial 9.

(b) In most models of channels and transport-
ers, transition rates depend exponentially
on the applied voltage, with the translo-
cated charge, Qij, determining the voltage
dependence. For example, the opening and
closing rate constants, a (V) and b (V),
respectively, might be given by

a Vð Þ ¼ a0e
zaVF

RT ð39Þ
and

b Vð Þ ¼ b0e
zbVF

RT ð40Þ
where a0 and b0 are the respective rate
constants at 0 mV, za and zb the respective
gating valences, and F, R, T the Faraday
constant, the gas constant, and the abso-
lute temperature, respectively, with kT/qe ~
25 mV at room temperature. For such a
transition, the value of the translocated
charge for the opening transition is (za �
zb)3qe, where qe is the absolute charge of
an electron. The charge for the closing
transition is the negative value of that of
the opening transition, that is (zb � za)3qe.
More generally, the translocated charge of
transition (i,j) at a given voltage can be
determined by the logarithmic derivative
with respect to voltage of the rate con-
stants involved in the transition:

Qij ¼
d lnðrijÞ

dV
�

dln rji

� �
dV

� �
kT ð41Þ

where k is Boltzmann’s constant and T is
assumed to be 300 K. This procedure for
determining the translocated charges is
selected in the simulation program by
choosing auto as the Transporter/
gating current function in Markov
Editor (or by leaving this field blank). With
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this setting, MarkovEditor uses the loga-
rithmic derivative of the rate constants to
determine the translocated charge (Eq. 41),
and Eq. 38 to calculate the transporter and
gating currents associated with the model.
This choice is the simplest and, in most
cases, an adequate mode of selection.

C. Method of stochastic simulation
So far, we have described the use of

deterministic simulations of the properties of
a finite number of ion channels or transporters.
However, one could also use a stochastic
approach (analyze the behavior of the ensem-
ble starting from the properties of a single
channel or transporter), under the assumption
that they behave independently of each other.
In this case, because each channel or trans-
porter is modeled independently, the time
needed for simulation is proportional to the
number of channels and becomes prohibitive
for a very large number of channels.

This mode of operation is useful, for exam-
ple, to explore the variability of possible
experimental results, if the underlying data
would be described by a given Markov model.
This mode also allows to test predictions of
stationary and nonstationary noise analysis.

In the stochastic simulation mode of chan-
nels it is possible to include a noise level for
each channel state. The noise is specified as the
standard deviation of a Gaussian white noise
level added on top of the current level of a
channel state. This can be used for example to
create realistically looking channel events, as
we saw in Figure 4, or to test the influence of
open channel noise on noise analysis or other
types of analysis. It is also useful to test the
capabilities of single-channel analysis software,
in particular, regarding missed events detec-
tion. The stochastic simulation of a single
transporter or channel is exact in the sense
that it is independent from the sampling time
selected in the sampling procedure.

At the beginning of each sweep, the holding
potential determines a starting state, using a
random number chosen between 0 and 1, and
the stationary occupation probabilities pi. For
example, for a 2-state model with p0¼ 0.3, p1¼

0.7, a random number ,0.3 would lead to the
selection of state 0 as the starting state,
whereas a larger random number would select
state 1. Random numbers are calculated by
using the Mersenne Twister pseudorandom
number generator (http://www.math.sci.
h i roshima-u.ac . jp/~m-mat/MT/MT2002/
CODES/mt19937ar.c). Once a state i has been
specified, the mean sojourn time in this state is
given by the inverse of the sum of all rate
constants leaving that state (11):

si ¼
1P
j rij

ð42Þ

Using a random number r in the interval
]0. . .1], a stochastic prediction of the time
spent in this specific state is given by

T ¼ � ln rð Þ � si ð43Þ
If the command voltage changes to a new

value at any sampling instance before reaching
time T, the rate constants are recalculated and a
new dwell time is computed. The approach
exploits that by virtue of the digitalization and
discrete sampling, the command voltage
changes stepwise. The procedure to calculate
a new dwell time, independent of the time
already spent in a given state, is valid because
of the memoryless nature of a Markov process.
At the end of the dwell time, the state to which
the system will jump is determined with a novel
random number and using the rate constants
departing from the current state as relative
weights in the decision. The timing of the jump
is independent from the sampling time, and it
may indeed happen that the system is chang-
ing state more than once during a given
sampling period, leading effectively, and in a
realistic manner, to missed events in the
simulation.

To simulate the transporter or gating current
spikes, the charge associated with the transi-
tions is summed during each sample period
providing Qnet, the net charge translocated
during a sampling period. Then, the current
signal Qnet/Dt, where Dt is the sampling
interval, is added to the overall current
sampling output.
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XX. TUTORIAL 1: INSTALLING
MARKOVEDITOR ON A
WINDOWS COMPUTER

MarkovEditor is specific for Windows (Micro-
soft Corporation, Redmond, WA) and runs on
Windows XP (Microsoft) and higher (including
Windows 10, Microsoft). The code is written in
Microsoft Visual Cþþ, and although it is fully
compatible with VisualStudio 2019 (Microsoft),
the current build is done with VisualStudio
2005, allowing execution on Windows XP,
which is still in use in many less developed
countries. The source code is available on
request. The program should run on Windows
emulators on Mac (Apple Inc., Cupertino, CA)
and Linux (Linux Foundation, San Francisco,
CA).

You can download the MarkovEditor master
zip file from https://github.com/mikpusch/
MarkovEditor.git. Save the program file
MarkovEditor.exe in a directory of choice
and create shortcuts on the desktop. In
addition, the master zip file contains the
following model files containing the models
illustrated in this article:

2States.mod
LigandGated.mod
Patlak_Na-Channel.mod
Patlak_Na-Channel_Mut.mod
Uniporter.mod

These model files can be loaded via the
Menu item File-.Open.

Further, the following setting files are includ-
ed

2States.set
LigandGated.set
LigandGatedLongSimulation.set
LigandGatedDwellTimeDistribution.set
NaChannelIV.set
UniporterVaryParams.set
UniporterVisualSimulation.set

Finally, the pulse generator file (pgf), Pul-
ses.pgf, is included. It contains several sample
stimulation protocols.

It is possible that some antivirus programs
will recognize MarkovEditor as a virus. In this

case, you need to explicitly instruct your
antivirus program that MarkovEditor.exe
is not a virus.

Furthermore, because MarkovEditor is writ-
ten in Visual Cþþ, it necessitates several dll files
from the Visual Cþþ redistribution suite. If these
are not present on the computer, an error
message appears on launching MarkovEditor.
In this case you need to install these dlls by
executing the program vcredist86.exe,
contained in the MarkovEditor master zip file.
Now, MarkovEditor should run.

XXI. TUTORIAL 2: INSERTING
THE 2-STATE MODEL INTO
MARKOVEDITOR

MarkovEditor can hold several models simul-
taneously, each in its own window. Windows
are divided in 2 panes: the upper pane show
model predictions; the lower pane harbors the
model itself. All models discussed in this article
are contained in the master zip file that can be
downloaded from https://github.com/
mikpusch/MarkovEditor.git. These models can
be loaded into the program via the menu item
File-.Open.

The following steps describe the manual
creation of the 2-state model within Markov-
Editor from a blank new file.

(a) Adding the states of the model

In the lower pane, double-click or right-click
on empty space to create the closed and the
open states. For each, assign a label (e.g., ‘‘C’’
to the closed state), a current value (for now, 0
for the closed state and 1 for the open state),
and for now, ignore (i.e., assign default values
by simply hitting ok) for sigma and initial
probability function. Note that the index of
state C is 0. In general, indices in MarkovEditor
follow the convention of the C programming
language to range from 0 to N�1 for an array of
N items. A maximum of 100 states can be
present in a single model.

(b) Assigning the parameters of the model

The voltage-dependent 2-state model is
characterized by 4 parameters, a0 and b0, z,
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and d (see main text). Such parameters are held
in an array that is accessed by clicking on the
Parameters button in the lower pane of
MarkovEditor, bringing up a dialog box in
which values for up to 36 parameters (from
A[0] to A[35]) can be assigned.

Here, we will use in an arbitrary manner
parameters A[0] for a0, A[1] for b0, A[2] for z and
A[3] for d assigning values:

A[0] ¼ 10
A[1]¼ 1, meaning that at 0 mV, the closing rate

is 10 times slower than the opening rate,
implying that opening is favored, i.e., that
V1/2 is negative;

A[2] ¼ 2, a gating valence of 2 elementary
charges;

A[3] ¼ 0.5, i.e., symmetric voltage dependence
of opening and closing rate constants.

Next, to formulate the voltage-dependent
rate constants, we add variables, which are
expressions dependent on parameters A[i],
voltage (or concentration), and other variables
that have been already defined. To this end, we
click on the Variables button in the lower pane,
select Add, and enter the following string in the
dialog box

A[0]3exp(v3A[2]3A[3]/25)0 opening rate constant

creating variable w[0]. This is exactly reflecting
Eq. 17, defining the voltage-dependent open-
ing rate constant (V)¼ a0edzVqe= kTð Þ , i.e., w[0]¼
a(V).

Note that expressions are not case sensitive
(i.e., no distinction is made between uppercase
and lowercase characters) and that comments
can be added after the defining expression
preceded by 0. The division by 25 (i.e., 25 mV)
expresses that at ambient temperature the
value of kT/qe is around 25 mV. A maximum of
1,000 variables can be added to a model. We
next add variable w[1] by repeating the above
procedure and inserting the string

A[1]3exp(-v3A[2]3(1-A[3])/25) 0 closing rate
constant

reflecting Eq. 18, which defines the voltage-
dependent closing rate constant b(V) ¼
b0e� 1�dð ÞzVqe= kTð Þ, i.e., w[1] ¼ b(V).

To assign these variables as rate constants for
state transitions, we right-click between the 2
states, select New transition 1 and insert the
string

w[0]

in the dialog box. Next, we repeat the
procedure now inserting

w[1]

as New transition 2. Then, we insert the
voltage-dependent single-channel current of
the open state, characterized by the single-
channel conductance c and the reversal poten-
tial Erev. We delegate these parameters to A[4]
and A[5], respectively, assigning values of 10 to
c¼ A[4], reflecting a conductance of 10 pS, and
�80 to Erev ¼ A[5] reflecting a typical equilibri-
um potential of�80 mV of Kþ in excitable cells.
To render this decision explicit, we define a
novel variable w[2] as follows:

A[4]*(v-A[5])*1e-3’ single-channel
current in pA

This expression needs 2 clarifications. First,
the seemingly awkward string 1e-3 (or equiva-
lently 1E-3, remember that these expressions
are not case sensitive) is a convention used in C
and other programming languages to enter the
number 10�3. For example, to enter the number
-1.23*10-4, one would use the string -1.
23E-4. Second, the scaling by 10�3 reflects the
choice to express voltage in millivolts, current
in picoamperes and conductance in picosie-
mens. To assign this expression as the single
channel current of state O, we right-click on
state O, select EditState and enter w[2] as
current.

Finally, to render single-channel simulations
more realistic, i.e., to make them look like real
recordings (and to test the performance of
single-channel analysis programs regarding
noise), we add a noise level to each conduc-
tance state. This is used only for the stochastic
simulations, not for the deterministic macro-
scopic predictions. To this end, we right-click
again on each state and assign a certain noise
value to the sigma field, resulting in the
addition of white noise with standard deviation
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given by the sigma value (in picoamperes). For
example we add a noise of 0.05 pA to the
current of the closed state and a larger value of
0.1 pA to the open state to simulate the open
channel noise seen experimentally for many
channels (15). Now, the 2-state model is ready
for exploration.

XXII. TUTORIAL 3: GENERAL
SETTINGS

The general settings dialog is invoked by the
menu click Settings-.Edit general
settings. Settings can be saved on file. Note
that on start-up, MarkovEditor automatically
loads the latest setting file that had been saved
or loaded during previous sessions.

In the dialog, the Voltage Scaling tab defines
the voltage or concentration range for which
steady-state properties are to be calculated and
plotted. The Probability Codes tabs define
the states for which the occupation probabil-
ities is plotted. The pulse protocol consists of 3
time segments. A holding segment of duration
t0, and 2 segments for which not only the
voltage and concentration and duration, but
also increments (or decrements) for these
values can be specified. The sample time
determines the number of points to be
calculated (and plotted). The time step in
visual simulation (ms) determines the
speed with which the visual simulation of a
single transporter will be visualized.

In the Spectrum tab, the frequency range
over which the power spectrum is calculated is
defined. No. Freq. points is number of
points created for the spectrum plot. The No.
Channels in stochastic simulations is
relevant only for stochastic simulations! For
deterministic calculations, the number of chan-
nels is considered always 1.

XXIII. TUTORIAL 4: THE PGF
STIMULATION PROTOCOLS

Selecting the menu item Settings-.
Edit pgf file opens the pgf dialog shown
in Supplemental Figure S1. The same stimula-
tion protocols are used in the GePulse data
acquisition program (https://github.com/

mikpusch/GePulse.git). A sample pgf file called
Pulses.pgf containing several stimulation
protocols is included in the material that can be
downloaded from https://github.com/
mikpusch/MarkovEditor.git. Note that on start-
up, MarkovEditor automatically loads the latest
pgf file that had been saved or loaded during
previous sessions.

The most important parameter for the
s t im u la t i on p r o to c ol is th e sample
interval (in milliseconds), which determines
the density of points to be calculated. Each
stimulation consists of an arbitrary number of
segments, which are created by clicking on the
corresponding N (for new) button and deleted
by clicking on the D (for delete) button. For
each segment, the segment type has to be
chosen among VHOLD, CONSTANT, RAMP,
SINE or WAVE. Make sure to click on the
selected text after selection to make the
selection definite (it has to be shown in blue
color)! The meaning of the segment types are
the following.

VHOLD: The initial voltage (i.e., that of the
first sweep) is determined by the holding
voltage, which is defined in the General
Settings (see Tutorial 3). In the GePulse
acquisition program, VHold is defined in the
front panel. Apart from the value of the initial
voltage, the segment behaves like a CONSTANT
segment.

CONSTANT: The voltage remains constant
throughout the segment. Its (initial) duration is
determined by the Duration field. If the
number of sweeps is larger than 1, the
increments Delta V and Delta t are applied
to determine the voltage and duration of the
segment in successive sweeps. The V-factor
and t-factor are applied multiplicatively to
increment (or decrement) voltage or time. In
particular a t-factor of 1.5 is useful for so-
called envelope protocols, such as recovery
from inactivation of sodium channels. Initially,
time increments are small, allowing precise
sampling of the initial rapid phase and become
exponentially longer, thereby reducing the
number of pulses that have to be applied to
reach long durations.
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RAMP: The voltage changes linearly over time
from the previous value (of the previous
segment or VHold) to that defined in the
voltage field.

SINE: The segment consists of a piece of a
sine wave around the voltage defined in the
voltage field, with frequency defined in the f
Sine field and amplitude defined in the V
sine field.

WAVE: An arbitrary shape of stimulation can
be loaded from a text file. The file has to
contain one number (i.e., voltage) per line. This
is useful, for example, for stimulation with the
shape of an action potential.

In MarkovEditor, the Leak tab, where the
classical P/4 style leak subtraction can be
defined, is not used. Also the Chain tab, with
which in GePulse different stimulation proto-
cols can be linked, is not used in MarkovEditor.
In case the simulation is intended to be used
also by the GePulse acquisition program, the
Relevant Seg tab is useful to define the
segment whose voltage is relevant for analysis
(Rel X Seg) and the segment whose current
level should be analyzed (Rel Y Seg 1).

To create a new stimulation sequence, click
on an empty field on the top and assign a
name. A pgf file can hold an arbitrary number
of stimulation sequences, can be saved on disk
by clicking on the Save button, and loaded
from a disk by clicking on the Load button.
Note that there is no warning if changes made
have not been saved to the disk before exiting
the program.

XXIV. TUTORIAL 5: GRAPH
OPTIONS

For each model window, MarkovEditor keeps
in memory several graphs illustrating the
results of the last performed simulation. Each
graph is populated once the Calculate or
the VaryParams button is clicked. After
changing any parameter of the model to
update the graph, the Calculate or the
VaryParams button has to be clicked again,
i.e., graphs are not updated automatically after
change of parameters.

Data shown in the graphs can be exported in
ASCII format to the clipboard or to a text file by
right-clicking on the graph. For some graphs
(e.g., time course), data can also be exported in
a binary format that can be opened by the Ana
analysis program (https://github.com/
mikpusch/Ana.git) and the GePulse data acqui-
sition program (https://github.com/mikpusch/
GePulse.git).

For each plot present in a graph, a short line
of the same color is drawn on the top right of
the graph. When the mouse pointer is placed
close to such a short line, the corresponding
plot will be drawn with a thick pen, and
additional text related to the plot is displayed.

The axes can be in automatic or manual scale
and either on a linear or a logarithmic scale.
These settings can be changed by right-clicking
on the axis. A variable number of ticks is shown.

XXV. TUTORIAL 6:
EXPLORATION OF THE
PARAMETER SPACE: THE VARY
PARAMS DIALOG

MarkovEditor offers a systematic way to
explore the behavior of the model when
different values are assigned to the parameters
encoded in the array fields A[0] . . . A[35]. The
variation scheme is accessed by the menu item
Settings-.Edit vary which params. In
the dialog, up to 8 parameters can be selected
to be varied. For each chosen parameter,
several options can be selected: a lower and
an upper bound, the number of steps, and if
variation should be done on a logarithmic scale.
For example, to explore values 0.1, 1, and 10 for
parameter A[0], the lower bound is 0.1, the
upper bound 10, the number of steps 3, and
variation is to be done on a logarithmic scale.

XXVI. TUTORIAL 7: ENTERING
THE 3-STATE, LIGAND-
ACTIVATED CHANNEL MODEL

All models discussed in this article are
contained in the master zip file that can be
downloaded from https://github.com/
mikpusch/MarkovEditor.git. These models can
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be loaded into the program via the menu item
File-.Open. In particular, the ligand activat-
ed 3-state model is contained in the file
LigandGated.mod.

However, to provide an additional example
highlighting the logic behind MarkovEditor, the
following steps describe the manual creation of
the 3-state ligand gated model within Markov-
Editor from a blank new file.

The model

U
!k L½ �

 
l

B
!a

 
b

O

is characterized by 5 parameters: k, [L], l, a, and
b. The ligand concentration [L] could be
encoded by one of the parameters, e.g.,
following a certain tradition of MarkovEditor,
encoding it in parameter A[32]. Alternatively,
and this will be done here, instead of using the
voltage as the dominant variable determining
channel behavior, the concentration of the
ligand, denoted as c, will be used as the
independent variable, playing an equivalent
role as the voltage in voltage-gated channels.
This will allow us to easily construct dose-
response curves as well as concentration jump
experiments. Parameters k, l, a, and b are
delegated to A[0], A[1], A[2], A[3] respec-
tively, assigning, for example, A[0]¼A[1]¼1
and A[2]¼A[3]¼2.

To create a new model, the File-.New
menu option can be selected and the previ-
ously mentioned parameters values are entered
by clicking on the Parameters button in the
lower pane. States U, B, and O are created by
double-clicking or right-clicking in empty
space. As for the 2-state model, to render
single-channel simulations realistic, we assign a
sigma value of 0.1 to all states. The current
is 0 for states U and B and 1 for state O. The
ligand concentration [L] will be entered as c,
instead of the variable v used for voltage-gated
channels. For the simple model we will not use
any variable but insert the various transition
rate constants by right-clicking between states
and entering A[0]*c for the rate constant from
state U to state B and the strings A[1], A[2],
A[3] for the remaining transitions, respectively.

See Supplemental Figure S2 for a screenshot of
the final model.

We also adjust the general settings by
choosing cLeft ¼ 0.01, cRight ¼ 10,
deltaC ¼ 0.01, where cLeft is the lowest,
and cRight the highest concentration to be
plotted in the graph displaying the steady-state
concentration dependence, with points sepa-
rated by steps of deltaC. We next impose the
following pulse protocol Npulses¼1,
sample time ¼10, cHold ¼ 0.01, c1¼2,
c2¼0.01, t0¼1000, t1¼10000, t2¼5000.
This pulse emulates a concentration jump from
a very low concentration (0.01 mM) to a high
concentration (2 mM) and back to 0.01 mM. Do
not forget to save the model (File-.Save)
and the settings (Settings-.Save) on disk.
The corresponding model file (LigandGated.
mod) and settings file (LigandGated.set)
can also be downloaded from https://github.
com/mikpusch/MarkovEditor.git.

XXVII. TUTORIAL 8: ENTERING
PATLAK MODEL OF VOLTAGE-
GATED NAþ CHANNELS—THE
TEXT-BASED INTERFACE

We will enter model 7 of (23) by using the
text-based interface of MarkovEditor. To this
end, we first create a new and empty model by
selecting File-.New. Now, we right-click in
the lower window, and from the pop-up menu,
we select Edit model in text window, which will
open a text window. Here, we delete all text
present (right-click and chose Select all and
after that Delete from the pop-up menu) and
paste (right-click and select Paste from the
pop-up menu) the following text exactly as
shown:

T R A N S P O R T E R - G A T I N G C U R R E N T
FUNCTION:auto

FUNCTIONS:
FUNC[0]¼x*a[13]/(xþa[13]) ’ used to

keep rate constants below upper
limit a[13]

VARIABLES:
w[0]¼log(6.24e12) ’ ln (kT/h) - model

7 from Patlak, Physiol. Rev. 1991
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w[1]¼exp(w[0] þ a[4] þ (1-a[8])*a[6] þ
a[7]*a[8]*v/25) ’ kappa

w[2]¼exp(w[0] þ a[5] þ a[8]*a[6] -
a[7]*(1-a[8])*v/25) ’ lambda

w[3]¼exp(w[0] þ a[0] þ a[7]*a[8]*v/25)
’ alpha_m

w[4]¼exp(w[0] þ a[1] - a[7]*(1-
a[8])*v/25) ’ bet_am

w[5]¼exp(w[0] þ a[2] þ a[8]*a[6] þ
a[7]*a[8]*v/25) ’ delta

w[6]¼exp(w[0] þ a[3] þ (1-a[8])*a[6] -
a[7]*(1-a[8])*v/25) ’ gamma

w[7]¼exp(w[0] þ a[9] - a[11]*(1-
a[12])*v/25) ’ alpha_h

w[8]¼exp(w[0] þ a[10] þ a[11]*a[12]*v/
25) ’ beta_h

STATES:
#0;C1; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 1.9089574e-002; y ¼ 0.
28961749

#1;C2; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 0.22393539; y ¼ 0.29143898

#2;C3; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 0.3773862; y ¼ 0.29143898

#3;C4; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 0.55506608; y ¼ 0.29143898

#4;O; i¼0.01*(v-50); sigma ¼0.05;
initprob ¼1; x ¼ 0.79368576; y ¼ 0.
29326047

#5;I1; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 0.55580029; y ¼ 0.77595628

#6;I2; i¼0; sigma ¼0.05; initprob
¼1; x ¼ 0.79295154; y ¼ 0.7704918

RATES:
FROM 0 TO 1:func[0](4*w[1])
FROM 1 TO 0:func[0](w[2])
FROM 1 TO 2:func[0](3*w[3])
FROM 2 TO 1:func[0](2*w[4])
FROM 2 TO 3:func[0](2*w[3])
FROM 3 TO 2:func[0](3*w[4])
FROM 3 TO 4:func[0](4*w[5])
FROM 3 TO 5:func[0](w[8])
FROM 4 TO 3:func[0](w[6])
FROM 4 TO 6:func[0](w[8])
FROM 5 TO 3:func[0](w[7])
FROM 5 TO 6:func[0](4*w[5]) ’ 4* delta
FROM 6 TO 4:func[0](w[7])
FROM 6 TO 5:func[0](w[6])
PARAMETERS:

a[0]¼-19.
a[1]¼-22.35
a[2]¼-19.
a[3]¼-23.9
a[4]¼-21.32
a[5]¼-27.08
a[6]¼-1.8
a[7]¼2.45
a[8]¼0.6
a[9]¼-26.5
a[10]¼-22.4
a[11]¼0.3
a[12]¼0.5
a[13]¼20000

Now, right-click again and select Parse from
the pop-up menu. If no error occurred (which
should be the case for the previously mentioned
code), a message saying Successfully
parsed and copied into model should
appear, signaling that everything went smoothly
and that you can safely close the text window.
The model should correctly appear, as illustrated
in Figure 6A.

XXVIII. TUTORIAL 9: MANUAL
DEFINITION OF THE GATING
CURRENT FUNCTION FOR THE
2-STATE MODEL

To illustrate the general use of the
Transporter/gating current function,
we will define a function that allows to
calculate gating currents of the 2-state model
defined in Eq. 1 and rate constants defined in
Eqs. 17 and 18.

According to Eq. 29, gating currents for the
2-state model are given by

Igate tð Þ ¼ qez pC tð Þa� pO tð Þbð Þ
Thus, having implemented the 2-state model

in MarkovEditor, as described in Tutorial 1,
using the variables w[0] and w[1] for the rate
constants, and a[2] for the gating valence, the
Transporter/gating current function
can be inserted as

1.6e-19*a[2]*(p[0]*w[0] – p[1]*w[1])/
1e-12 ’ gating current in pA
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that gives the gating current in picoamperes.
This should give the same result as the
automatic mode, i.e., inserting auto as the
Transporter/gating current function.

XXIX. TUTORIAL 10: INSERTING
THE UNIPORTER MODEL INTO
MARKOVEDITOR

As in Tutorial 8, we will enter the uniporter
model by using the text-based interface of
MarkovEditor. To this end, we first create a new
and empty model by selecting File-.New.
Now, we right-click in the lower window, and
from the pop-up menu, we select Edit model in
text window, which will open a text window.
Here, we delete all text present (right-click and
chose Select all and after that Delete
from the pop-up menu) and paste (right-click
and select Paste from the pop-up menu) the
following text exactly as shown:

T R A N S P O R T E R - G A T I N G C U R R E N T
FUNCTION: auto

FUNCTIONS:
VARIABLES:
w[0]¼a[4]*exp(-v*a[0]/2/25) ’ empty

transporter moves inward
w [1 ]¼a [4 ] * a [7 ] / a [6 ] ’ o b e y

microscopic reversibility
w[2]¼w[1]*exp(v*a[0]/2/25) ’ empty

transporter moves outward
w[3]¼a[6]*exp(-v*(a[2]þa[0])/2/25) ’

loaded transporter moves inward
w[4]¼a[7]*exp(v*(a[2]þa[0])/2/25) ’

loaded transporter moves outward
w[5]¼a[8]*exp(v*a[1]/2/25) ’

unbinding of substrate to the
outside

w[6]¼a[8]*exp(-v*(1-a[1]-a[2])/2/
25) ’ unbinding of substrate to the
inside

w[7]¼a[9]*a[32]*exp(-v*a[1]/2/25) ’
binding of substrate from outside

w[8]¼a[9]*a[33]*exp(v*(1-a[1]-a[2])/
2/25) ’ binding of substrate from
inside

STATES:
#0;Out-0; i¼0; sigma ¼0; initprob
¼1; x ¼ 0.50848896; y ¼ 0.81777778

#1;In 0; i¼0; sigma¼0; initprob¼1; x
¼ 0.52276065; y ¼ 0.31554524

#2;Out 1; i¼0; sigma¼0; initprob¼1;
x ¼ 0.72099853; y ¼ 0.80046404

#3;In 1; i¼0; sigma¼0; initprob¼1; x
¼ 0.73568282; y ¼ 0.32018561

RATES:
FROM 0 TO 1:w[0]
FROM 0 TO 2:w[7]
FROM 1 TO 0:w[2]
FROM 1 TO 3:w[8]
FROM 2 TO 0:w[5]
FROM 2 TO 3:w[3]
FROM 3 TO 1:w[6]
FROM 3 TO 2:w[4]
PARAMETERS:
a[0]¼-0.1
a[1]¼0.2
a[2]¼0.5
a[4]¼100.
a[6]¼100.
a[7]¼100.
a[8]¼1000.
a[9]¼1000.
a[32]¼1.
a[33]¼1.

Now, right-click again and select Parse
from the pop-up menu. If no error occurred
(which should be the case for the previous-
ly mentioned code), a message saying
Successfully parsed and copied
into model should appear, signaling that
everything went smoothly and that you can
safely close the text window.
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