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ABSTRACT students develop and test simple kinetic models of the spread of
coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) virus. Microsoft Excel is used as the modeling
platform because it is nonthreatening to students and it is widely available. Students
develop finite difference models and implement them in the cells of preformatted
spreadsheets following a guided inquiry pedagogy that introduces new model
parameters in a scaffolded step-by-step manner. That approach allows students to
investigate the implications of new model parameters in a systematic way. Students
fit the resulting models to reported cases per day data for the United States using
least squares techniques with Excel’s Solver. Using their own spreadsheets, students
discover for themselves that the initial exponential growth of COVID-19 can be
explained by a simplified unlimited growth model and by the susceptible-infected-
recovered (SIR) model. They also discover that the effects of social distancing can be
modeled using a Gaussian transition function for the infection rate coefficient and
that the summer surge was caused by prematurely relaxing social distancing and
then reimposing stricter social distancing. Students then model the effect of
vaccinations and validate the resulting susceptible-infected-recovered-vaccinated
(SIRV) model by showing that it successfully predicts the reported cases per day data
from Thanksgiving through the holiday period up to 14 February 2021. The same
SIRV model is then extended and successfully fits the fourth peak up to 1 June 2021,
caused by further relaxation of social distancing measures. Finally, students extend
the model up to the present day (27 August 2021) and successfully account for the
appearance of the delta variant of the SARS-CoV-2 virus. The fitted model also
predicts that the delta variant peak will be comparatively short, and the cases per
day data should begin to fall off in early September 2021, counter to current
expectations. This case study makes an excellent capstone experience for students
interested in scientific modeling.

KEY WORDS foundational biophysics; computational methods and
bioinformatics; instructional strategies; learning materials and teaching tools;
teaching and learning of scientific reasoning and problem solving; researchers in
biophysics-related education; teachers and students of foundational courses in the
biophysics-related sciences; teachers and students of introductory courses in the
biophysics-related sciences

I. INTRODUCTION

When the coronavirus disease 2019 (COVID-19) pandemic reached
the United States and classes were moved online, all of us had to
reevaluate how we would teach and what content we would cover. |
had been working on a long-term project to introduce molecular
biophysics into the undergraduate curriculum using an active learning
approach, Biophysics and Physiological Modeling (1). As an educator
and modeler, | was curious as to whether the biophysical modeling
techniques | had been developing for undergraduates using Excel (or
compatible spreadsheet programs) could be applied to modeling the
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spread of the COVID-19 disease caused by the
novel severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) virus. This article is an
account of what | discovered with my students
using the United States as a case study (2).

A. Kinetic models

Kinetic models in biochemistry and biophys-
ics apply to molecules being jiggled around by
the molecules surrounding them. Similar mod-
els can, and have, been applied to a wide
variety of other applications. Diffusion between
two compartments can be modeled as a
reversible first-order reaction (3). Drug elimina-
tion and radioactive decay are processes
analogous to an irreversible first-order reaction
(1). Population dynamics and epidemiological
models can also be formulated using similar
mathematical models. The approach we will
use is implemented as a simple finite difference
(FD) model based on the Euler method, made
famous by the 2016 movie Hidden Figures.
These methods are ideal for introducing
undergraduates to modeling kinetic processes
because the computational steps of the FD
model are represented by successive rows of
the spreadsheet (1, 3). Using Excel’s Solver
feature (version 2109, Microsoft Corporation,
Redmond, WA), the predictions of these FD
models can be fitted to experimental data
using least squares (LS) techniques (1). As we
will discover, the same approach can also be
used to model the spread of COVID-19 and
compare the model predictions with reported
data for confirmed cases of COVID-19 in the
United States (2). As students discover, these
simple FD models can do a surprisingly good
job of modeling the spread of COVID-19 in the
United States from February 2020 through
August 2021.

B. Learning objectives and
pedagogical approach

The educational objectives are for students
to learn how to

(@) apply FD methods to introductory epide-
miological models using the approach
presented in (1);
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(b) apply systematic model development tech-
niques to a complex real-world problem;
and

(c) use nonlinear LS methods to test the
predictions of the various numerical models
by fitting them to published data for the
United States.

The pedagogical approach is a guided
inquiry active learning case study. Students
begin by investigating the simplest possible
“unlimited growth” epidemiological model.
They then validate it by fitting it to published
cases per day data for the United States as a
whole. That model is then systematically
modified to account for finite population size,
recovery from COVID-19, changes in the
infection rate coefficient due to changes in
social distancing (and the delta variant), and
finally, to account for vaccinations. The teach-
ing materials use a scaffolded approach that
focuses on the impact of each model param-
eter in a step-by-step manner (2).

The use of a systematic step-by-step ap-
proach is important for epidemiological mod-
els because they inherently produce
exponential growth or decay in the infection
rate. As a result, they are mathematically
comparable to kinetic models of ion channel
permeation that also predict exponential
dependence (of electrical current on mem-
brane voltage) and where it was shown that
the presence of too many parameters led to
fitted parameters of questionable physical
significance (4). Hence, in the modeling
exercise presented here, students are only
asked to add additional model parameters if
the data call for them (Occam’s razor).

Il. FINITE DIFFERENCE MODELS
AND FD DIAGRAMS

A. Unlimited growth (UG) model

In the simplest models of epidemiology, the
population is split into two groups: susceptible
and infectious (SI; Fig 1). The simplest of those
SI models is the unlimited growth (UG) model,
in which the infection rate R; (arrow in Fig 1) is
given by
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Fig 1. FD diagram of the UG epidemiological model. The two boxes
represent the two parts of the model population. Box s represents
people that are susceptible to the disease. Box i represents people
that are infectious.

R,' = k,'N,' (1)

where k; is the infection rate constant and N, is
the number infectious. The idea behind the UG
model and Eq. 1 is that an infectious person
wanders randomly throughout the model
population, just like a molecule in aqueous
solution, infecting others with a rate character-
ized by an infection rate constant k; where k; =
0.25 d" ' means that an infectious person infects
a susceptible person every 4 d, on average,
causing them to “jump” from box s — i when
they become infectious (usually some days
after contact with the infectious person).

| chose to use the symbol N; for the number
infectious to make the notation match standard
biochemical practice for molecular systems.
However, epidemiologists prefer using the
single uppercase letter | instead of N;. They
also prefer to use Greek letters for the rate
constants so that the infection rate is written as
pl (5). We will stick with using the traditional
chemistry k with a descriptive subscript for rate
constants and N with a descriptive subscript for
numbers in the boxes of the models.

The UG model of Figure 1 is unlimited
because the model population is assumed to
be infinite, and an infectious person stays
infectious forever. Both of those assumptions
are clearly incorrect, but they make for the
simplest model. We will discuss making the
population finite and modeling recovery in the
next sections. However, the UG model gives
students important insights into the initial
spread of the virus: when the general popula-
tion did not know that SARS-CoV-2 was in their
local area.

Equation 1 is different from most first-order
reactions because the rate of jumps into box i is
proportional to the number N; already in box i.
This can be contrasted with other processes

such as first-order drug elimination, where the
rate of jumps out of the body (and into the
bladder) is proportional to the number in the
body (1).

According to the UG model of Figure 1, the
FD equation for the small change ON; in the
number infectious N; during a short time ot (the
timestep) is given by

ON; = R;ot (2)

where R; is given by Eq. 1. Hence, the model
can be implemented in a spreadsheet using the
following condensed FD instructions (2):

tneW — told + 8t (3)
R = ki x N}"d (4)

and
NP = NP 4 RSV s« 5t (5)

where the superscript “old” refers to the
previous row in the spreadsheet (previous
computational step) and “new” refers to the
current row of the spreadsheet (current com-
putational step). Hence, N° is the old number
infectious (previous row at time 'Y and NP is
the new number infectious (current row at time
"W = t°9 1 §t); see the glossary of symbols in
the appendix. The asterisk symbol is included in
Egs. 4, 5, and others to remind students that it
is required in Excel formulas. The first activity
asks students to write out a complete FD
algorithm based on Egs. 3-5 to calculate the
infection rate R;(t) and number infectious N(t).
Students implement the algorithm in the rows
of a preformatted spreadsheet, and by plotting
the model predictions on semi-log graphs, they
discover that the UG model predicts an
exponential growth in both the number
infectious N; and the infection rate R; (2, 6).

In a “show-that” exercise, students solve the
elementary differential equation implied by
Egs. 1 and 2 to give the following analytical
solution

N; = Noekt (6)

which predicts an exponential growth in the
number infectious from an initial number
infectious Ny (at t = 0). Substituting Eq. 6 into
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COVID-19 cases in the USA per day
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Fig 2. Excel chart comparing the exponential growth model of Eq. 7 for R{t) with reported data for the United States in the 19 d after 26
February 2020. The solid line is a LS fit to the US data. The fitted model parameters are Ny = 23 and k; = 0.22 d~". Data source ECDC (7).

Eq. 1 yields
R,’ = kiNoekit (7)

for the infection rate R (t). Equation 7 is
important because R; corresponds to the
publicly available number of new confirmed
COVID-19 cases reported per day. Because both
N; and R; are exponential functions of time,
students are able to show that the exponential
growth can be characterized by a doubling
time

In2
ty = 8
4= (8)

Students then compare the predictions of Eq.
7 with published cases per day data using a
preformatted spreadsheet: first using Excel’s
“exponential trendline” and then using the LS
techniques implemented using Excel’s Solver.
Figure 2 shows the resulting LS fit to Eq. 7, with

k;N;s )
s i

susceptible infectious

Fig 3. FD diagram of a two-box epidemiological model exhibiting
limited growth. The two boxes in this finite population (FP) model
represent the two parts of the population that can be affected by
the disease. Box s represents the portion of the population
susceptible to the disease. Box i represents the portion infectious.
Lowercase s is the fraction of the population that are still
susceptible to infection.

data reported (7) for the United States during
the 19 d after 26 February 2020. As students
discover, the model does a surprisingly good
job of explaining the reported data, validating
the UG model’s prediction of exponential
growth for the initial uncontrolled spread of
the contagion (2).

B. Finite population (FP) model

The FD diagram in Figure 3 shows a simple
modification of the UG model that accounts for
the finite size of the population. In this finite
population (FP) model, the infection rate is
given by

R,‘ = k,'N,‘S (9)

where s is the susceptible fraction of the
population that is defined by

s=— (10)

where N; is the number susceptible and N (with
no subscript) is the total number of people in
the model population, where

N =N+ N; (11)

Hence, we are assuming that the model
population size does not change during the
modeling time (no births or deaths). As a result,
we can update N using the instruction
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Flattening the curve by social distancing
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Fig 4. Excel area chart showing the predictions of the FP model for Ri(t) (Eq. 9) for a model population of N = 1,000, an infection rate
constant of k; = 0.3 d™", an initial number infectious of No = 1, and a timestep of &t = 1 d. The “with social distancing” curve shows
the effect of reducing the infection rate constant by a factor of 2 on day 0 to k; = 0.15 d~" by implementing social distancing and mask

wearing.

NPeW — N — NPV (12)

The idea behind Eq. 9 is that people behave
like molecules in solution. They randomly
bump into each other at a constant rate, on
average. Infections occur with a fixed probabil-
ity when people get close together. If we
assume that encounters occur at a constant
rate, then the probability that an infectious
person interacts with a susceptible person (as
opposed to another infectious person) is simply
s, the fraction of the population that is
susceptible. In other words, s is the fraction of
people an infectious person encounters that
are still susceptible to the virus. These simple
assumptions are easy to understand, but it is
important to remember that people are not
molecules.

By substituting the definition of s (Eq. 10),
into Eq. 9 and solving Eqg. 11 for N;, students
show that the FP model can be calculated
using

RMW — f; 5 NO'9 5 NO19 /N (13)

and the instructions in Egs. 5 and 12.
Students write out a complete algorithm for
the FP model and implement it in a preformat-
ted spreadsheet. They are then able to inves-
tigate how social distancing can “flatten the
curve” by halving the infection rate constant

from k;= 0.3 d' to k;=0.15 d”', as shown in
Figure 4. The effect of having a finite popula-
tion is that the infection rate no longer
increases exponentially without limit, and there
is a peak in the R;(t) curve that can be flattened
by social distancing. Interestingly, the Ni(t)
curve (not shown) exhibits the classic logistic
growth first reported by Verhulst (8) and later
by McKendrick (9). According to the FP model,
social distancing merely delays the inevitable.
Eventually, everyone in the model population
becomes infectious despite the reduced infec-
tion rate constant. As we will discuss in the next
section, the SIR model is qualitatively different,
because social distancing can reduce the
ultimate number infected, and it can even
prevent the outbreak from occurring at all.

C. SIR model

The main problem with the FP model is that
people do not recover—ever. Clearly, that is
not realistic. People do recover from COVID-19
and hence stop being infectious after a period
of time. Figure 5 shows an FD diagram for the
SIR epidemiological model. Named after the
letters used for the three boxes, it is an
important base model in epidemiology devel-
oped by Kermack and McKendrick in 1927 (10).
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susceptible infectious recovered

Fig 5. FD diagram of the SIR epidemiological model. The three
boxes represent the three parts of the model population that can be
affected by the disease. Box s represents the portion that is
susceptible to the disease. Box i represents the portion infectious.
Box r represents the portion that is recovered from the infection (or
died). Sometimes this box is labeled removed, as in removed from
consideration.

The three boxes in Figure 5 represent the
possible states of people in the model popula-
tion. In the SIR model, N,, s, and N; have the
same meaning as the FP model. The new state
variable is N,, which represents the number
recovered. It is the number of individuals in the
model population that have been infected but
have now recovered and are no longer infec-
tious and are further assumed to be immune to
the disease forever. The symbol N, more
correctly stands for the number removed from
the susceptible or infectious boxes. In addition
to recovering, individuals can be removed from
the number infectious by being isolated or
quarantined from the susceptible portion of the
population, and they are also removed by death.
All those individuals are represented by box r.
We also have a relationship with the total
number N in the model population, and it spells
out the initials of the SIR model in the subscripts
of the bookkeeping equation

N = N; +N; + N, (14)

Now that we have discussed the three boxes,
let us talk about the arrows between boxes in
Figure 5. The first arrow from box s — |
represents the rate of infection R;= k;N;s (Eq. 9),
the same equation that we used for the FP
model of Figure 3. The second arrow from box i
— r represents the rate of recovery. That
recovery rate is given by

R, = k,N; (15)

where k, is the recovery rate constant and the
mean residence time in box i (1) is predicted to
be

Introductory models of COVID-19

1
T = K (16)
We will call z; the mean infectious time. It can
be approximated by a quantity that can be
measured clinically, the mean recovery time.
Using the information above, students write
out FD instructions using Eqgs. 13 and 17-20.

RIY — K, Nl (17)
N;eW — N,'OId + (R?ew o R’l:\eW) * Ot (18)
NP — N(r)ld + RYY * Ot (19)

N?ew — N _ Ninew _ N?EW (20)

They then write out a complete algorithm for
the SIR model, implement it in a preformatted
spreadsheet, and then they answer a series of
questions comparing the properties of the SIR
model with the previous models.

Subsequently, students investigate the ef-
fects of social distancing by reducing the
infection rate constant k;. Figure 6 shows the
kind of graphical information students observe
in the spreadsheets. As shown in Figure 6, they
discover that not everyone in the model
population needs to be infected by the end
of the pandemic if social distancing is imple-
mented and maintained until the pandemic has
subsided, i.e., the number susceptible N; does
not reach zero at the end of the pandemic,
meaning that some susceptible individuals
were never infected (see week 50 in Fig 6a).

A universal feature of the SIR model is that it
predicts an “exponential dragon” in the
infection rate R,(t) (fig 6b and fig 12.15 of (2)),
whose duration is determined by the value of
the infection rate constant k;. The peak of the
exponential dragon exhibits a characteristic
inverted vee shape on a semi-log plot (2). The
idea of using a dragon analogy for explosive
exponential growth was inspired by the ex-
pression “tickling the dragon’s tail” that is
based on a remark by Richard Feynman about
the dangers of some ill-advised early nuclear
experiments in which exponential growth had
the potential for similar catastrophic conse-
qguences. See section 12.4 of (2).
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Fig 6. Excel charts showing the predictions of the SIR model for a model population of N = 1,000, an infection rate constant of
k = 0.12 d~", a mean infectious time of t; = 16 d, an initial number infectious of Ny = 1, and a timestep of 6t = 0.01 d. Chart (a)

shows the numbers in the three boxes s, i, and r of the SIR model. Chart (b) shows the exponential dragon predicted for the infection rate R;

(solid blue line) and the recovery rate R,. Note that because of Eq. 15, the recovery rate R, is directly proportional to the number infectious

N,

In a guided inquiry exercise, students inves-
tigate the effect of the model population size N
on the predictions of the model. They discover
that model populations of all sizes in the SIR
model behave in a similar manner and produce
the same shape curves for N, N;, N,, R;, and R,,
independent of the size of the model popula-
tion. In a later show-that problem, they
discover that the SIR model can be reformulat-
ed in terms of fractional variables s, i, and r,
where the fraction susceptible s is defined by
Eqg. 10, the fraction infectious i is defined by

= (21)

and the fraction recovered r is defined by
r=— (22)

The fact that the SIR model predicts the same
behavior independent of model population size
is an important property of the SIR model.

D. Herd immunity

After the peak in Ni(t), the SIR model predicts
that the number infectious N; will steadily
decline because the rate of infection R; is less
than the rate of recovery R,. This can be related
to the epidemiological concept of herd immu-
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nity (11). One way to see how the two concepts
are related is to consider the quantity 1 — s,
which is the cumulative fraction that have been
infected at the time t, of the peak in Ni(t). We
can then define i, as the fraction infectious and
rp, as the fraction recovered at time t,
respectively. Hence, from the bookkeeping Eq.
14, we have

so that 1 —s, =i, + r,. Hence, the quantity 1 —
sp is the sum i, + r,, which is the cumulative
total number of people that have been infected
at time t,.

Our SIR model assumes that individuals who
have been infected cannot be infected again.
Hence, anyone who has already been infected
is permanently immune in our SIR model. As a
result, the fraction of the model population
that are immune at any time can be written as

h=i+r=1-s (24)

where h is the fraction immune or the immune
fraction of the model population. Once the
immune fraction h reaches

h,=1-s5, (25)

the recovery rate R, is larger than the infection
rate R;, and the model predicts that the disease
will be in decline and eventually die out. The
fraction h, is the herd immunity threshold. If
the fraction immune is greater than or equal to
hy, i.e., if

h> h, (26)

then the disease will be in decline rather than
growing (as indicated by whether N(t) decreas-
es or increases, respectively).

E. Finding the peak in the curve
and R,

In a guided inquiry exercise, students are
asked to consider why the infection rate curve
Ri(t) always cuts through the peak in the
recovery rate curve R(t); see, for example,
Figure 6b. Students discover that the peak in
N(t) and R,(t) occurs when

Introductory models of COVID-19

By substituting Eqgs. 9 and 15 into Eq. 27,
students show that the value of the fraction
susceptible s at the peak in N; is given by

Sp = = — 28

p ki RO ( )
where Rq is the basic reproduction number
that is given by

Ro=kiti=—=— (29)

The basic reproduction number R, was
made famous in the 2011 movie Contagion,
and it is arguably the most important widely
discussed parameter of epidemiological models
(12). The first part of Eq. 29, Ry = kt; defines
Ro as the number infected by a single
individual at the beginning of the outbreak
when s = 1; k; is the average number of people
infected by a single infectious individual per
day; and 7; is the mean number of days that
they are infectious.

Because Ro = 1/s,, we can write the herd
immunity threshold h, in Eq. 25 in terms of the
basic reproduction number Rq

1
hy, =1 e (30)

The best fit value of Ry students obtain by
fitting the US data with ;=8 d is Ro ~ 4.1 so
that the herd immunity threshold for the
original variants of COVID-19 is h, ~ 0.76 or
about 76%, in the absence of any social
distancing measures. Recall that in the SIR
model, the value of the infection rate constant
k; depends on the level of social distancing.
Hence, whenever the infection rate Rjt) is
decreasing, we have technically passed the
herd immunity threshold for the current value
of k;.

lll. GAUSSIAN TRANSITION
FUNCTIONS

The ultimate goal of this section is to model
transitions between different levels of social
distancing in a straightforward manner by
making the infection rate coefficient a function
of time ki(t) in the SIR model (personal
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A step change in k; produces a spike in R;
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per day)

20,000

USA data
growth data
decay data
SIR model

7 :-'f‘:""v TR~ @‘.J, B
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time t (d)

Fig 7. Excel chart showing the fitted SIR model with a step change in the infection rate coefficient from k; = k; = 0.505 d~" to k; =k, =
0.118 d"), where & is calculated from the initial epoch 1 of exponential growth (orange dots) and k; is the value students calculated for the
epoch 2 of social distancing (green dots). The only adjustable parameter in the fit is the transition time ¢, =35 d between k; and k. The
other parameters in the model are N=28.25 X 107, 8t=14d, 7;=8d, and Ny =5.54 (2). As shown, the fit produces a transition spike (grey
line) that does not match the reported transition data. Data source ECDC (7).

communication, R. Hilborn, American Associa-
tion of Physics Teachers, 5 June 2020). The title
of this section is a spoiler because it really was
not obvious, at least to me, that Gaussian
transition functions between the different
epochs in the pandemic were a good way to
go, even though, in hindsight it seems rather
obvious.

A. Initial transition to social
distancing

When students come to this section, they
already know that the SIR model can success-
fully model the pandemic in the United States
during the initial period of exponential growth
(epoch 1 in Fig 7) using an infection rate
constant of k; = k; = 0.505 d™". In a guided
inquiry activity, students discover that the SIR
model can successfully model the exponential
decay during the second epoch (epoch 2 of
social distancing) up to Memorial Day, 25 May
2020. The fit is excellent, but the initial
conditions for the fit are arbitrary and mean-
ingless. My first attempt at modeling the
transition using a step change in the infection
rate coefficient k; was an abject failure. As
shown in Figure 7, the model can successfully
model both epoch 1 (exponential growth) and

epoch 2 (social distancing), but the step change
in k; between epochs 1 and 2 produced a spike
in the fitted model of R{t) that is clearly
inconsistent with the reported data during
the transition period.

As the title of this section states, the solution
to this conundrum was to change the transition
function for k{t) from a step change to a
Gaussian transition function. Once again, it
turns out that Excel is a convenient platform for
modeling COVID-19 because it includes a
function NORM.DIST that implements the
Gaussian distribution, both as a probability
density function and as a cumulative probabil-
ity. The latter is what we need for our Gaussian
transition function. The justification for a
Gaussian transition function is that not all
states, communities, or individuals took up
social distancing at the same time (or to the
same extent). The simplest assumption is that
those transition times are normally distributed
and hence can be represented by a Gaussian
transition function. From a modeling perspec-
tive, a Gaussian transition function is appealing
because it introduces only one additional
parameter for the standard deviation of the
Gaussian that accounts for the statistical spread
in the times when individual people changed

Nelson. The Biophysicist 2021; 2(3). DOI: 10.35459/tbp.2021.000200

82

$S900E 98] BIA £0-/0-GZ0Z 1e /woo Alojoeignd-pold-swiid-yewssiem-pd-awiid//:sdiy woll papeojumoc]



Introductory models of COVID-19

Modeling the transition to social distancing
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Fig 8. Excel chart showing the SIR model (solid orange line) fitted to the US data (blue circles). SIR model parameters, k; = 0.60 d= ",
ky =0.12d7", t; = 27 d, and a1, = 12.3 d, were fit simultaneously using the LS method. The remaining SIR model parameters were set
to N =28.25%X107,8t =1d, 7; = 8d, and Ny = 5. The transition from k; — k; is modeled using a Gaussian (normal) distribution with
mean t;; and standard deviation o4,. The dotted line shows pq,(t), the probability density function (Eq. 32) of the Gaussian transition
function f,(t) (Eg. 31). Circled numbers indicate epochs 1 and 2 of the pandemic. Data source ECDC (7).

their level of social distancing. The implemen-
tation that students use in Excel has two
parameters: t;, is the mean transition time
between epochs 1 and 2; and g,, is the
standard deviation of the distribution of
transition times between epochs 1 and 2. The
Excel function for calculating the cumulative
probability Fq,(t) of the normal (Gaussian)
distribution for the transition times between
epochs 1 and 2 is

F?zew = NORMD'ST(tneW, t12, U12,TRUE) (31)

where F$" is the value of the Gaussian
cumulative probability at time t"*" and TRUE
is the value of the “cumulative” parameter of
the NORM.DIST Excel function (2, 13). The
corresponding probability density pq,(t) can
be calculated using cumulative = FALSE, i.e.

phe™ = NORM.DIST(t"", t15, 615, FALSE) (32)

The time-dependent infection rate coeffi-
cient ki(t) can then be calculated using

Ko =k + F0 s (ky — ki) (33)

Students implement the model in a prefor-
matted spreadsheet and fit the model to the
published data using LS techniques and Excel’s
Solver (Fig 8) (2, 13).

Using this transition function, students esti-
mate the number of lives that were lost
because the rest of America did not follow
New York City’s lead with mask wearing and
social distancing. The estimate they obtain is
60,000+ lives lost by Memorial Day (25 May
2020) based on the observed crude mortality
ratio of m.=0.0595 in the European Centre for
Disease Prevention and Control (ECDC) data (7).
This estimate is based on a simple empirical
correlation students discover between the
observed mortality rate and the observed
infection rate R; (2, 13).

B. The summer surge

Using similar techniques, students are also
able to model the summer surge resulting in
the fit to the US data up to Labor Day (7
September 2020) shown in Figure 9. Students
add parameters for epoch 3 with an infection
rate constant ks for the relaxed social distanc-
ing at the beginning of the summer surge, a
transition time t,3, and standard deviation o5s.
The decline in the summer surge is modeled
with an infection rate constant k, for the
stricter social distancing during the decline in
the summer surge and a corresponding transi-
tion time t34 and standard deviation o34.
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Understanding the summer surge
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Fig 9. Excel chart showing the predictions of the SIR model (solid orange line) when fitted to US data reported as confirmed cases per day
by the ECDC (blue circles) up to Labor Day (7 September 2020) for four epochs of the pandemic (circled numbers): epoch 1, the initial
exponential growth; epoch 2, the epoch of social distancing; epoch 3, the relaxation of social distancing following Memorial Day; and epoch
4, the return to social distancing following the Fourth of July. The vertical dashed lines indicate Memorial Day and the Fourth of July. The
graph also includes the infection rate coefficient k;(t) (green dotted line) on the secondary vertical axis. Data source ECDC (7).

C. The fall surge and the effect of
population size on the SIR model

According to a Centers for Disease Control
and Prevention (CDC) report dated 19 January
2021, only 1 in 4.6 (95% uncertainty interval
(Ul), 4.0-5.4) of total COVID-19 infections were
reported in the period from February to
December 2020 (14, 15). Rounding up to one
significant figure, that means that only about 1
in 5 of actual COVID-19 infections are repre-
sented in the data to which the model is fitted
in Figure 10, i.e, g ~ 20%, where g is the
fraction of the actual US population that is
represented in the reported cases per day data,
defined by

N

9= (34)
and N* = 33 X 10® is the estimated actual
population of the United States. There are two
ways to account for this shortfall in reported
cases per day data. One way is to multiply the
cases per day by a factor of 1/q =5, and the
other way is to reduce the model population
size to N = gN*, or 20% of the actual US
population. We chose the latter, because it

makes the model predictions directly compa-
rable to the reported cases per day data.

Figure 10 shows the predictions of the SIR
model when students fit a fifth epoch with
infection rate constant ks, a transition time t,s,
and standard deviation g45. The subsequent
model then predicts a fall exponential dragon
that depends on the model population size.
Figure 10 shows the range of predictions of the
fitted model for model population sizes of g =
10%, 20%, and 40% of the actual US popula-
tion, i.e, N =3.3 X 107, 6.6 X 107, and 1.32 X
108, respectively.

As shown in Figure 10, changing the model
population size and refitting has no visible
effect on the fitted model up to Thanksgiving
Day (26 November 2020). However, the model
predictions for the fall exponential dragon
almost immediately diverge, depending on
the size of the model population. In a guided
inquiry exercise, students discover that the
fitted infection rate constants (k; — ks) are
different for the three fitted models and that
the difference in the predicted behavior after
Thanksgiving is primarily due to differences in
the values of the susceptible fraction s at
Thanksgiving and partially due to differences in
the fitted infection rate constants. The values of
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The fall dragon and population size

400,000
350,000

new 300,000 USA data
infection SIR model
rate 250,000 Lab. Day.
R; 200,000 Thxgiving

i

(confirmed 150,000
cases
per day) 100,000

50,000

150 200 250 300 350 400
time t (d)

Fig 10. Excel chart showing the predictions of the SIR model when fitted to 5 different epochs: epoch 1, the initial exponential growth;
epoch 2, the initial period of social distancing; epoch 3, the relaxation of social distancing following Memorial Day; epoch 4, the return to
social distancing following the Fourth of July; and epoch 5, the fall surge following Labor Day (7 September 2020). The blue circles show the
US data reported as confirmed cases per day up to Thanksgiving (26 November 2020). The solid orange line represents a model population
of 20% of the actual US population. The dashed orange lines represent predictions of the fitted model for model populations of 10% and

40% of the actual US population. Data source OWID (16).

s at Thanksgiving are s = 0.61, 0.80, and 0.90,
and the fitted values of the infection rate
constant are ks = 0.23, 0.18, and 0.17 d™' for
models with g = 10%, 20%, and 40%,
respectively. The fitted value of ks = 0.23 d™'
for g=10% is clearly higher than the other two
fits, and students discover that g = 10% of the
actual US population is just about the smallest
model population size that is consistent with
the data up to 26 November 2020 (Thanksgiv-

ing).

susceptible infectious recovered
k;N;s . k,N;
s » i r
R,;
Rv,s < RU,T
v
vaccinated

Fig 11. FD diagram of a simple modification of the SIR model that
accounts for vaccinations, the SIRV model. The four boxes represent
the four parts of the model population that can be affected by the
disease. Box s represents the portion of the population that is
susceptible to the disease. Box i represents the portion of the
population that is infectious. Box r represents the portion of the
population that has recovered from the infection (or died). Box v
represents the fully vaccinated portion of the population.

For the two higher fits in Figure 10, the
infection rate constants are approximately the
same (ks ~ 0.18 d™") so that the difference
between them is primarily due to the difference
in the susceptible fraction at Thanksgiving (s =
0.80 and 0.90), respectively. Recall that the
susceptible fraction s is a monotonically de-
creasing function in the model, and the g =
20% model starts closer to the peak value of s,
= 0.70 for epoch 5. In other words, the primary
difference between the fits with g = 20% and
40% is that there are more susceptible people
left in the model population at Thanksgiving if
q = 40% rather than g = 20%.

IV. MODELING VACCINATION

A. SIRV model

In late December 2020, the US Federal Drug
Administration (FDA) approved COVID-19 vac-
cines for use in the United States (emergency
use authorization). Figure 11 shows a simple
model of how vaccination can be added to the
SIR model. The new feature is box v for fully
vaccinated individuals. The arrows entering box
v indicate the rates at which individuals are
effectively vaccinated. They are then assumed to
be permanently immune to COVID-19. The three
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rates leading to box v are labeled R, R, and
R, where the subscripts “s,” “i,” and “r”
indicate the originating box. These three vacci-
nation rates are related to the total rate of

vaccination R, in the model population by
RV - Rv7s + RV,I’ —‘I_ Rv7r (35)

The bookkeeping equation for the suscepti-
ble-infected-recovered-vaccinated (SIRV) model
is

N =N+ N;+N,+N, (36)

where the subscripts once again spell out the
letters of the model.

The number of vaccinated individuals in the
model population is calculated from the
number fully vaccinated N reported by Our
World in Data (OWID) (16) using Ny = gN;"".
However, because the OWID spreadsheet data
contain some blank cells, the following Excel
instruction is used

er1ew — IF(N:new _ O,Nf,"d,q * N:new) (37)

and the FD instruction for the vaccination rate
in the model population is

R = (NP —Ng) /5 (38)

The rate of vaccination of susceptible indi-
viduals in the model population can be
calculated using

RIS = NP4 RIS/ (NS + NP+ N29)  (39)

and similarly for R)$", and R)$". Eq. 39 and the

v, ! s
corresponding equations for R and R)SY
assume that individuals in each of the three
boxes s, i, and r are equally likely to be
vaccinated. Hence, in the SIRV model, the
numbers in boxes i and r can be calculated

using
N.new — N_old + <Rnew _ Rhew _ Rnew> « Ot
i — INj i r v,i
(40)
NP — e (RPe — RS ) w5t (41)
Combining Eqgs. 39-41 with bookkeeping Eq.

36 yields the following FD instructions for the
numbers in boxes i, r, and s.

Ninew — N,-OId + (R;'\ew . R;\ew . Nlpld % RCEW/
(N — N2'9)) 3¢
(42)

N?ew — N?Id + (Rpew _ NSId % RceW/(N _ Nsld))
* Ot

(43)
and
N?EW — N _ Ninew _ Nrnew _ N‘I’JEW (44)

Using a preformatted spreadsheet, students
use Egs. 37, 38, and 42-44 to implement the
SIRV model and compare its predictions with
reported data (see below). Note that when
comparing the model variables with the
published data, it is important to recall that
all vaccinations are reported, but only about 1
in 5 infections are reported.

B. Modeling epoch 5—the fall
dragon

Figure 12 shows the SIRV model fitted to the
US data up to Thanksgiving Day (26 November
2020), with a model population of g =21.7%
of the actual US population, i.e, N=7.17 X 10’
based on the CDC estimate (15). The predic-
tions of the SIRV model in Figure 12 were
made using the number fully vaccinated N;""
that was reported daily by OWID (16). Figure
12a includes a plot of the infection rate
coefficient k;(t), showing the changes in social
distancing in the fitted model. An important
feature of the prediction is that none of the
model parameters were changed after Thanks-
giving Day. Specifically, the infection rate
coefficient k; remains constant at the same
value k; = ks = 0.18 d™' that started the fall
surge, throughout the entire holiday period
and beyond.

Figure 12b shows the same fitted SIRV model
as in Figure 12a, but Figure 12b now includes
additional US data from Thanksgiving (26
November 2020) through 14 February 2021.
Those additional data (grey diamonds) were
not used in the fit and hence test the
predictions of the model after Thanksgiving,
throughout the 2020 holiday period, and the
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Modeling using vaccination data
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Fig 12. Excel charts showing the USA data and the predictions of the SIRV model. The blue circles show US data reported as confirmed
cases per day up to Thanksgiving Day (26 November 2020). The jagged black line shows the centered 7-d moving average of the US data.
The solid orange line shows the predictions of the SIRV model, assuming that the model population is ¢ = 21.7% of the actual population
(15). Chart (a) shows the infection rate coefficient k;(t) as a function of time on the secondary vertical axis. Circled numbers indicate the
epochs of the pandemic. Chart (b) shows additional US data (grey diamonds) up to 14 February 2021 that were not used in the fit and the
corresponding 7-d average (jagged black line). These unfitted data validate the predictions of the SIRV model with a constant infection rate
coefficient of ks = 0.18 d'in epoch 5 of the pandemic. Data source OWID (16).

first month and a half of 2021. Because of the
large fluctuations in data reported over the
holiday period, students are introduced to the
idea of plotting a 7-d moving average of the US
data. Because we are interested in the fit to the
data, students do not use Excel's built-in
moving average that averages the 7 d up to
the current day (you may have seen graphs of
this same type widely reported in the popular
press). Instead, students use a centered moving
average that does not produce a systematic 3-d
delay in the average curve because it is

centered on the current day. The centered
moving average can easily be implemented
using Excel’s AVERAGE() function (2) and
provides a good visual comparison with the
model predictions. Day 400 corresponds to 1
April 2021.

C. Epoch 6 and epoch 7 (the delta
variant)
Figure 13 shows the SIRV model fitted to US

data up to today (27 August 2021). Two
additional epochs, 6 and 7, have been added
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Modeling using vaccination data
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Fig 13. Excel chart showing the predictions of the SIRV model. The blue circles show US data reported as confirmed cases per day up to 27
August 2021. The jagged black line shows the centered 7-d moving average of the reported US data. The smooth orange line shows the
SIRV model fitted to the 7 epochs of the pandemic in the US, with a fitted value of N = 6.64 X 10’ or g = 20.1% of the actual US

population. Data source OWID (16).

to the model, and the parameters were fitted in
a similar manner to that described above.
Unlike Figure 12, the fit shown in Figure 13
includes the model population size as a fitted
parameter. The fitted value is N =6.64 X 107 or
g = 20.1% of the actual US population. This
number is consistent with the value of g =
21.7% that was assumed for the fit in Fig 12.
The LS fit parameters for the 7 epochs are
recorded in Table 1. The other model param-
eters used in the fit were 6t=1d, 7,=8.0 d, and
No = 5. The calculated parameters correspond-
ing to this fit are Ro =4.1 and t,= 1.8 d at the
beginning of the pandemic.

V. DISCUSSION

“All models are wrong, but some are usefu
is a common aphorism in epidemiology (17). In

I’?

sympathy with that statement, the modeling
approach presented here follows the principle
of Occam’s razor so that the models students
investigate are made as simple as possible and
include no unnecessary parameters. This allows
our attention to be focused on the essential
model assumptions and their qualitative and
quantitative consequences.

According to Holmdahl and Buckee (18),
COVID-19 models generally fall into one of two
general categories that they call “forecasting
models” and “mechanistic models.” The phe-
nomenological models discussed here are
mechanistic models whose purpose is to gain
insights into the real system being modeled.
This can be contrasted with forecasting models,
such as the original versions of the model from
the Institute for Health Metrics and Evaluation

Table 1. SIRV model parameters for the 7 epochs of the COVID-19 pandemic in the United States.

Epoch Start date t; (d) ajj (d) ki (1/d) sp = k./k; h, (%)
1 26 Feb 2020 0 — 0.59 0.21 79

2 25 Mar 2020 28 N 0.12 1 0

3 15 Jun 2020 110 4.4 0.17 0.73 27

4 19 Jul 2020 144 8.8 0.12 1 0

5 29 Sep 2020 216 15 0.18 0.70 30

6 16 Mar 2021 384 10 0.32 0.39 61

7 2 Jul 2021 492 19 0.89 0.14 86

2 Not applicable.
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that received a great deal of attention in the
popular press in 2020 (18).

A. Model assumptions

The models presented here can be criticized
because the simplifying assumptions are clearly
not 100% accurate. However, there is a long
tradition of oversimplified models providing
important insights into the behavior of real
systems. As an example, consider the ideal gas.
The assumption that gas molecules do not
interact with each other is clearly wrong; gas
molecules cannot pass through each other, just
like they do not pass through the walls of their
container. However, students of thermodynam-
ics know that the ideal gas reference state is
central to the formulation of classical and
statistical thermodynamics. The ideal gas mod-
el is ultimately justified a posteriori, by com-
paring its behavior with real data and by the
utility of the insights it provides. In a similar
manner, the simplifying assumptions of the
models presented here are ultimately justified
by successful fits to the reported data and by
the utility of the insights provided by the
simplified model.

1. Infection is a Poisson process

All the models presented here include a
transition from box s — i that is characterized
by an infection rate coefficient k;. In the UG
model, the infection rate per infectious person
is ki, a constant that is independent of
everything. This assumes that infectious people
only interact with susceptible people and that
there is an unlimited supply of susceptible
people with which they can interact. In the FP
model, and later SIR models, the number of
interactions of infectious people with others is
still assumed to be constant, but now it is
assumed that the probability that the interac-
tion is with a susceptible person, rather than
another infectious person (or recovered or
vaccinated individual in the SIR or SIRV models),
is given by s, the susceptible fraction of the
entire model population. This might be a
reasonable assumption for a small model
population limited to a small geographic region
where the entire population interacts with each
other directly or indirectly on the timescale of

Introductory models of COVID-19

infection and recovery, but there are clearly
problems with applying this assumption to the
United States as a whole. Most people stay local
and do not interact with others outside of their
hometown or county. Also, there are regional
differences in levels of social distancing.

In comparing the models with reported cases
per day data, students must interpret the
meaning of the jump from box s — i carefully.
The model jumps do not occur at the time of
infection but rather at the time that the
individual becomes infectious. As with models
of diffusion that include similar jumps (1), it is
important for students to realize that these
model jumps are not instantaneous, and they
occur with a distribution of inter-event times
(19).

2. Recovery is a not a Poisson process

The arrows in Figures 1, 3, 5, and 11
represent rates that depend only on the current
state of the system. For example, for jumps
from box i — r in the SIR-based models, the
rate of recovery (or removal) is R, = k,N; (Eq. 15),
which means that the probability of any
infectious person recovering is a constant,
independent of everything, including how long
they have been infectious (and hence been in
box i). Because the probability is constant, the
model intrinsically assumes that recovery is a
Poisson process with an exponential distribu-
tion of residence times that has a peak at zero
time (1, 19). Students are reminded that is a
good approximation for drug elimination and
radioactive decay, but it is clearly not correct
for recovery from COVID-19 because infectious
people take a week or so to recover from the
disease (even if they have mild or asymptom-
atic cases). However, if we consider the
ensemble average number of people in box i
as a whole, then it seems reasonable that the
ensemble average recovery rate depends di-
rectly on the number infectious N; if we
consider times significantly longer than the
mean infectious time t;. The main advantage of
Eg. 15 is that it is easy to understand, and it
gives us a simple way to predict the recovery
rate R, based solely on the current number
infectious N,. Hence, we do not have to keep
track of each individual and how long they
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have been infected in the model, which would
be difficult to do in Excel. Students are
reminded that we are only trying to understand
the basics of epidemiology with our SIR model

(2).

3. Infection rate data

For simplicity, published cases per day data
are compared directly with the model infection
rate R; in these materials. This correspondence
is only approximate. There is usually a delay of
about a week or so between exposure to the
SARS-CoV-2 virus and when an individual
becomes infectious and transitions to box i.
Usually, there is a further delay before someone
in the model population tests positive and
appears in the published data. Hence, the time
when an individual first becomes infectious
(the jump from box s — i) is usually somewhere
between the time of exposure and the time a
positive test is reported. One delay is biological;
it takes time for the SARS-CoV-2 virus to be
reproduced in the body to a level that makes
the person infectious and that is detectable in a
COVID-19 test. The other delay is sociological;
most people were not tested every day so that
the time of their positive test depends on when
they were tested and when that positive test
was reported and tabulated in the data used
here. For example, early in the pandemic,
testing resources were scarce, and only symp-
tomatic patients were tested. This uncertainty
in the timing of an individual’s COVID test adds
to the uncertainty in the fitted transition times
between epochs. Hence, the delay between
exposure and becoming infectious and the
delay between becoming infectious and a
positive test result both need to be accounted
for if one wants to interpret the correlation
between public health policy changes and the
fitted transition times. Further discussion of
these fascinating public health policy issues is
beyond the scope of this article and is left as a
research question for students.

4. Gaussian transition functions

Within the model, the infection rate coeffi-
cient k; is the only model parameter that
changes between epochs of the pandemic.
The use of Gaussian transition functions is an

empirical choice that is supported by the
central limit theorem, namely, if you combine
enough random events, the distribution of
outcomes will approach the Gaussian (normal)
distribution. However, recalling that the data
being fitted is the total number of reported
cases across the whole United States, there are
potentially many independent or correlated
distributions that should be combined. Addi-
tionally, the model does not explicitly include
the delay between exposure to the virus and
becoming infectious, and the model does not
include the subsequent delay before a positive
test appears in the reported data. As a result,
the fitted transition times t; are likely delayed
from changes in public health guidelines or
mandates, and it is likely that the standard
deviations ¢ of the Gaussian transition func-
tions are too large. Both issues may be partially
addressed by including a box for individuals
who have been infected (exposed) but are not
yet infectious, as is done in the susceptible-
exposed-infected-recovered (SEIR) model, see
the discussion below.

5. Model population size

It is a bold assertion that the underreporting
of positive cases can be accounted for by a
single parameter g = N/N*, where N is the
model population size and N* ~ 3.3 X 10% is
the estimated actual population of the United
States. The use of a single g throughout the
pandemic cannot be supported by direct
measurement of actual infections; those data
are simply not available. The best estimate |
have been able to find was published by the
CDC (15), but their estimates have changed
over time. The most recent CDC estimate (27
July 2021) is 1 in 4.2 (95% UI, 3.6—4.9) COVID-19
infections were reported from February
2020—May 2021 (20), i.e., g = 24%. From a
modeling perspective, the assumption that g is
a constant throughout the pandemic can only
be justified a posteriori, if it is consistent with
the published cases per day data over the
entire course of the pandemic. In addition,
modeling of the pandemic at the present time
(late August 2021) is becoming increasing
problematic, as basic assumptions of the SIRV
model are being shown to be incorrect, at least
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for some reported cases. For example, some
fully vaccinated individuals are now testing
positive, and additional vaccination shots are
planned for those previously considered to be
“fully vaccinated.”

The simplest way to interpret g is that it is
the percentage of actual infections that appear
in the reported data. Using that as a measure of
what is happening in the actual population
assumes that those outside of the model
population, spread COVID-19, are infected by
COVID-19, recover from COVID-19, and are
vaccinated, in a similar manner to those in the
model population. This implies that individuals
in the model population are mixed in with the
rest of the actual population and that the rate
of reported cases is proportional to the rate of
actual cases.

In the SIR models, the first time that the
model population size affects the qualitative
behavior of the fitted model is after Thanksgiv-
ing Day (26 November 2020), during the fall
exponential dragon (Fig 10). The reason is that
the third peak in the pandemic is the first
model peak that corresponds to the exponen-
tial dragon predicted by the SIR model (Fig 6b).
The peak in the exponential dragon occurs
when s = k/k; i.e.,, when the fitted model first
reaches s = s, (the herd immunity threshold).
For epoch 5, k; = ks = 0.18 d', and the peak
occurs when s = s, = k,/ks = 0.70 or h, = 30%
(Table 1). Recall that s = Ny/N so that it depends
on the model population size N. Also, recall that
s is a monotonically decreasing function of time
in all the models presented here (reinfection is
not possible in all the models discussed here).

The fourth peak in the fitted SIRV model
occurs in epoch 6 when s =s, = k. /ks = 0.39,
or h, =61% (Table 1). The fact that the fit
shown in Figure 13 has essentially the same
value of g as the fit in Figure 12 provides strong
support for the SIRV model and the hypothesis
that g is approximately constant (at least up to
the beginning of epoch 7). The fitted value of
ke = 0.32d"" is nearly double k; and ks,
reflecting a significant further reduction in
social distancing during epoch 6, although
the infection rate constant is still nearly half
of what it was during the uncontrolled spread

Introductory models of COVID-19

in epoch 1 with k; = 0.59 d~' at the beginning
of the pandemic.

The much larger fitted infection rate constant
of k; =0.89d"' during epoch 7 can be
attributed to the emergence of the delta
variant of the SARS-CoV-2 virus in the United
States (and the low level of social distancing). In
an analogous manner to the third and fourth
peaks, the model predicts that the fifth peak in
the SIRV model will occur when s = s, = k, /k;
=0.14 or h, =86% (Table 1), assuming the
infection rate coefficient remains constant. The
fitted infection rate constant for the delta
variant (k;=k; =0.89d”") is ~2.8 times
higher than the previous variants of the virus
during epoch 6, which, if the level of social
distancing is the same, would imply that the
basic reproduction number for the delta variant
could be as high as Ro= 11 in the absence of
any social distancing measures.

After the fitted period (up to 27 August
2021), the SIRV model makes a rather bold
prediction that the curve will peak near the end
of August so that the cases per day data are
predicted to fall off during September and
October 2021 (Fig 13, day 600 corresponds to
18 October 2021). This prediction relies on the
infection rate coefficient remaining constant at
k; =0.89 d”' and that the model population
size is constant at g~20% throughout the
entire pandemic.

Of all the assumptions made in the SIRV
model, the assumption that g did not and will
not change with time (and is thus a single
constant throughout the pandemic) is probably
the most questionable. COVID-19 tests were
scarce at the beginning of the pandemic, and
estimates were made that fewer than 1 in 10
cases were reported, i.e., ¢ < 10%. According to
the CDC, this number increased to an average
of over g = 20% by January 2021 and g = 24%
from February 2020 to May 2021 in the report
dated 27 July 2021 (20). Clearly, this assumption
must be kept in mind when considering the
model parameters, particularly at the beginning
and the end of the pandemic. For example, one
implication of the CDC-estimated increase in g
is that the current value of s (on 27 August
2021) in the fitted SIRV model is probably too
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low so that the predicted delta variant peak
(epoch 7) likely occurs too soon because there
are more susceptible individuals s left in the
actual population than the SIRV model predicts.
Figure 10 illustrates this same delay and
increase in the size of the predicted exponen-
tial dragon as q is increased from g = 10% to
g = 20%. In addition, the fitted value of k; is
probably too high, in a similar manner to the
fitted value of ks = 0.23d™' being too high in
the fit with g = 10% (Fig 10).

6. Vaccinations

The form of the SIRV model shown in Figure
11 was chosen to match the vaccination
program in the United States. COVID-19 tests
were not a prerequisite for vaccination. Hence,
the status of individuals receiving vaccinations
is not included in the data. As a result, the SIRV
model assumes that vaccinations were admin-
istered to anyone in the population that was
asymptomatic at the time. That assumption is
reflected in Eq. 39 and the corresponding
equations for R)SY and R)S" so that the rate
of vaccination of individuals in each of boxes s,
i, and r is directly proportional to the numbers
currently in each respective box. This assump-
tion overestimates the vaccination rate of
people in box i (because symptomatic individ-
uals were not supposed to be vaccinated) and
underestimates vaccinations of individuals in
boxes s and r. The model does not consider
partially vaccinated individuals. Recall, N5 is
the reported number of fully vaccinated
individuals.

People are considered fully vaccinated two
weeks after their second dose of the Pfizer-
BioNTech or Moderna COVID-19 vaccines or
two weeks after a single dose of Johnson &
Johnson'’s Janssen COVID-19 vaccine (21). Just
like the other jumps in the SIR models, this
extended process is approximated by a single
jump transition of variable duration. As a result,
students should once again be reminded that
we are only trying to understand the basics of
epidemiology with our SIRV model (2).

Finally, the initial vaccination rollout in the
United States was targeted at specific groups,
health care workers, nursing home residents,
and the elderly, with progressively lower age

restrictions until the vaccine was released for
everyone 12 or older. As of late August 2021,
COVID-19 vaccines have not been FDA-ap-
proved for children under 12. The models
presented here do not take age into account,
treating everyone in the model population in
the same manner, irrespective of their age.
Clearly, this is another assumption that is
qguestionable, as different age groups behaved
in different ways during the pandemic and had
different susceptibilities to the disease.

7. Immunity is permanent?

A basic assumption of the SIR model is that
recovery from COVID-19 imparts permanent
immunity. There is no mechanism in the model
for an individual becoming infectious a second
time. That assumption is not universally correct.
If immunity granted by past infection were
permanent, then immunizing those who have
recovered from COVID-19 would be pointless
because they would not gain any benefit from
vaccination.

A basic assumption of the SIRV model is that
being fully vaccinated always imparts perma-
nent immunity. In late August 2021, that
assumption was known to be not accurate.
There have been reported cases of COVID-19 in
individuals who had been previously fully
vaccinated.

The assumption that immunity is permanent
provides a basic constraint on all the SIR-based
models presented here. At a constant infection
rate (of any fixed value), the pandemic is
predicted to peter out when enough people
become immune, either by being infected (and
recovering) or by being vaccinated. According
to the model, the third and fourth peaks in
epochs 5 and 6 of the pandemic were caused
by this affect, and the predicted peak near the
end of August (epoch 7) is also reliant on that
assumption. Hence, if k; = 0.89 d’ represents
the infection rate constant for the delta variant
of COVID-19 (at the current level of social
distancing) and delta is the last variant to
appear in the data, then in late August 2021,
we are closing in on a final test of the
permanent immunity hypothesis in our fitted
SIRV model and the related assumption that g
is a constant throughout the pandemic.
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B. Educational objectives and scope

The teaching materials discussed here are
designed as a case study in modeling a
complex data set. They are not meant to
directly inform public policy. However, simple
models often provide useful insights into
complex phenomena, not just by what they
model successfully, but also by what they
cannot explain. These insights are not usually
provided by forecasting models (18).

1. Finite difference methods

Students discover that the simple FD meth-
ods that they first learned in the context of
molecular biophysics can also be applied to
epidemiological models of COVID-19 in the
United States. All the models that students
investigate predict exponential growth at the
beginning of the pandemic. Exponential
growth is qualitatively different from most
models in molecular biophysics. Comparison
of exponential growth with exponential decay
provides students with further insights into the
properties of all models that predict propor-
tional change (1) and into challenges with the
accuracy of the FD method during rapid
exponential growth (2).

2. Systematic model development and LS fits

The teaching materials discussed here can be
used as an introduction to performing LS fits.
Students are guided through the process of
calculating the residuals between observed
data and the predictions of the model, calcu-
lating Q, the sum of the squares of the
residuals, and then using Excel’s Solver to find
the minimum in Q (2). If needed, students can
also be directed to Chapter 6 of (1) for a more
detailed introduction to LS fits in the context of
O, binding to myoglobin.

As mentioned in the introduction to this
article, performing LS fits to complex data is
more of an art than a science, particularly when
the model predictions depend exponentially on
the fitted parameters (4). Utilizing the principle
of Occam’s razor is central to the approach
presented here. Students are guided through
the modeling process starting with fitting the
UG model to epoch 1 with Excel’s exponential
trendline feature and then an LS fit. They then

Introductory models of COVID-19

fit the SIR model to epoch 2 (after the transition
is complete) to reproduce Figure 7. In produc-
ing the LS fit, shown in Figure 8, students first
estimate t;; and o7, by hand, adjusting the
values in the spreadsheet and observing the
effect on the model predictions. Only once they
have an approximate fit, do students use Excel’s
Solver to find the minimum in Q. Once students
have a fit as shown in Figure 8, they
systematically investigate how changing model
parameters N and t; affects the model and its
fitted parameters. They discover that the
model, up to the end of epoch 2, can be
successfully fitted with any reasonable values of
N and t;. The remainder of the fits to the SIR
and SIRV models are done in a similar manner
by systematically adding one epoch at a time.
That approach ensures that students under-
stand how each added parameter affects the
model and helps them avoid lack of conver-
gence problems that can plague complex LS
fits.

LS fits using the SIR model are not like
arbitrary polynomial fits. Polynomials can be
fitted to almost any shape curve, but the SIR
model (with constant k;) always predicts a
characteristic exponential dragon shape for the
infection rate R/(t); see Figure 6b. After a
transition to a new epoch, the shape of the
Ri(t) curve is determined by the current value of
the susceptible fraction s (and the infectious
fraction /) and the new value of the infection
rate coefficient k; because all the other model
parameters are held constant throughout the
pandemic. As students discover, epoch 1
corresponds to exponential growth at the
beginning of the dragon; epoch 2 corresponds
to a gradual exponential decay during the
dragon’s tail caused by s<k,/ky, (h>h,) with
low k; epoch 3 corresponds to exponential
growth with s>k, /ks, (h < hp); epoch 4, similar
to epoch 2, corresponds to a gradual exponen-
tial decay caused by s < k;/ka, (h > hp) with low
k; epoch 5 corresponds to an exponential
dragon, where the susceptible fraction starts
with s>k, /ks, (h<hp) and transitions to
s <k;/ks, (h<<h,), as the susceptible fraction
decreases and passes through s =k;/ks =s,
(herd immunity for k; = ks); epoch 6 corre-
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sponds to an exponential dragon in which the
susceptible fraction decreases and passes
through the value of s=k,/ks =5, (herd
immunity for k; = kg); and finally, epoch 7
(fitted up to 27 August 2021), corresponds to
another exponential dragon that is predicted to
peak around the present time (27 August 2021)
when the susceptible fraction passes through
the value of s = k. /k; = s, (herd immunity for
ki = k7); see Figure 13 and Table 1.

The fit to epoch 1 is a foundational
confirmation that the UG model (and the
subsequent SIR models) are reasonable, as
they successfully predict exponential growth
at the beginning of the pandemic. The fits to
epochs 2, 3, and 4, are not particularly
impressive from a modeling perspective, as
the fitted model does not appear significantly
different from a straight line (outside of the
Gaussian transition periods). Almost any mod-
el can predict linear behavior. However, the
fact that the fitted model predicts a peak in
epoch 5 that has the correct approximate
timing, height, and width, with a single
constant value of ki=ks=0.18d", is a
strong validation of the SIR model during that
time. Recall that the SIR model always predicts
an exponential dragon peak for Ri(t) of the
form shown in Figure 6b (if k; is constant).
Similarly, the fact that the SIRV model suc-
cessfully models the peak in epoch 6 with a
fitted value of g~ 20% (in agreement with Fig
12) and a constant infection rate constant kg
through the peak is another strong validation
of the SIRV model. Finally, the SIRV model also
successfully explains the emergence of the
delta variant in epoch 7 and makes a rather
bold prediction that the peak in Ri(t) will be
reached near late August 2021, assuming the
infection rate coefficient does not increase
beyond the fitted value of k; = 0.89 d™' and
that the fraction of the actual US population
that is represented in the reported cases per
day data remains constant at g ~ 20%.

The model prediction that the delta variant
peak is upon us at the end of August 2021 and
that the cases per day data should fall off
rapidly during September and October 2021 is
based on the increasing questionable assump-

tion that the model population is constant at
g~ 20% throughout the pandemic (and that
the infection rate coefficient will remain con-
stant at kj =k, =0.89d"'). As discussed
above, the CDC report dated 27 July 2021,
estimates that g is increasing as a larger fraction
of actual cases are reported (20). Hence, it is
likely that the height of the predicted delta
variant peak occurs too soon because there are
more susceptible individuals left in the actual
population than a value of g =~ 20% predicts. In
addition, it is likely that the value of k; = 0.89
d~' is an overestimate in a similar manner to
the fitted value of ks = 0.23 d~' being too high
in the fit shown in Figure 10 with g = 10%. The
validity of the assumption that g=20%
throughout the pandemic will be tested in
the next few weeks or so (2).

In summary, the systematic least squares
approach enables students to appreciate that
the SIR model and its SIRV variant do a
surprisingly good job of modeling the pan-
demic in the United States from 26 February
2020 to 27 August 2021. The most important
qguestion is not what is wrong with the
oversimplified model, but rather, why does it
work so well?

C. Model extension—the SEIR
model

An obvious extension to the work presented
here is to change the base SIR model to the
SEIR model. The main new feature of the SEIR
model is the explicit inclusion of a box e for
exposed individuals who have been infected
but are not yet infectious. SEIR model box e is
inserted between boxes s and i of the original
SIR model. Modeling using the SEIR model is
not included in this case study because it
would add another adjustable parameter to the
base model, and following the principle of
Occam’s razor, it has been omitted. Further
investigation of the SEIR model and its SEIRV
variant is left as a research exercise for students.
However, a preliminary investigation has
shown that the SEIR model also needs a
Gaussian transition function to successfully
model the transition from epoch 1 to epoch 2.
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VI. CONCLUSION

This project was motivated by a question.
Can undergraduates use spreadsheets to suc-
cessfully model the spread of COVID-19? The
answer is a resounding yes! In fact, this topic
makes an excellent capstone experience for
students interested in scientific modeling. The
FD methods used are accessible to students at
the level of introductory physics, and they
reinforce the universal applicability of compu-
tational methods in scientific modeling. Along
the way, students gain a different perspective
on kinetic models and rate constants by
applying them to the behavior of people.
Although people do not jiggle around like
molecules in solution, they do have interactions
with others at a rate that can be successfully
modeled using familiar biophysical techniques.

Excel is an often underrated platform for
computational modeling. It has numerous
advantages for undergraduate students and
their instructors that facilitate the learning
objectives of this case study. Excel is familiar
and nonthreatening to students; most under-
graduates have already used it to plot data in
science labs. It also has many features that
make it ideal for modeling the spread of
COVID-19. The most obvious feature is that
calculations are laid out spatially, which makes
it easier for students without programming
experience to follow the logic of the compu-
tational approach. Another advantage is the
ease of graphing.

FD methods can be easily implemented in
spreadsheets (1), allowing students to under-
stand and calculate solutions to differential
models that have no analytical solution. In
addition, there is an extremely simple proce-
dure for performing LS fits to computational
models using Excel’s Solver (1). Hence, Excel is
an excellent platform for practical reasons and
because it lets students and their instructors
focus on the learning objectives of (a) devel-
oping FD methods, (b) using systematic model
development techniques, and (c) validating the
models by fitting them to real data using least
squares. A scaffolded guided inquiry approach
is used so that students are actively engaged in
investigating the consequences of the model

Introductory models of COVID-19

assumptions in a systematic step-by-step man-
ner. That approach facilitates student under-
standing of the FD models as they develop
them, and it enables students to see how the
model parameters affect the qualitative and
quantitative predictions of these introductory
models, as they are systematically developing
them, while simultaneously validating them
using LS fits to reported data. Although the
approach is aimed at students without formal
programming experience, it can be easily
adapted for students with programming lan-
guages, such as Python (22).

Even though the approach uses only intro-
ductory methods, the modeling approach is
surprisingly successful in modeling the spread of
COVID-19 in the United States. Because of its
simplicity, the model also provides unexpected
insights into the spread of the virus. Notably
(after the initial exponential outbreak), the
behavior of the US population up to 14 February
2021 can be separated into two categories:
“stricter social distancing” and “relaxed social
distancing.” Epochs 2 and 4 of the model in
Figure 12a correspond to stricter social distanc-
ing with k, ~k; = 0.122+0.001 d', and ep-
ochs 3 and 5 of the model correspond to more
relaxed social distancing with k3~ks =
0.176 = 0.006 d~'. Hence, the inception of both
the summer and fall surges can be explained by
a modest 30% increase in the infection rate
coefficient k;.

A significant feature of the modeling ap-
proach is that it uses as few parameters as
possible to model the published data. It is easy
for students (and instructors) to be seduced
into the notion that the model can do better
(and it can), but every time an additional
parameter is added, the question that should
be asked, is will we learn anything new from it
(4, 23)? As the data came in day by day, it
seemed clear to me that there were changes in
the infection rate coefficient occurring during
the beginning of the fall surge. However, it
turned out that on a longer timescale, a single
transition function could fit the data almost as
well and with a simpler and more insightful
observation that ks =~ k.
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As the model is extended beyond Thanks-
giving (26 November 2020), students discover
that the size of the model population N
becomes an important parameter in the fitted
model. As shown in Figure 12b, the projected
model, with a model population of g~ 20% of
the actual US population, appears to match the
US data quite well. Once vaccinations began,
students added vaccination to the SIR model,
resulting in an SIRV model that explicitly
includes a separate box v for the fully
vaccinated. The success of the models in
predicting the basic shape, height, and timing
of the third peak (Fig 12) is a significant
validation of the predictions of the SIR model
and its SIRV variant because they have no
wiggle room in the form of the predicted
exponential dragon assuming constant k; = ks
and a constant value of g~ 20%.

The success of the SIRV model in explaining
the fourth smaller peak in the pandemic (Fig
13) with k; = k¢ and a fitted value of g~ 20%
(the same as the rest of the pandemic) is a
significant additional validation of the SIRV
model. A final test of the SIRV model is whether
it can explain the increase in the cases per day
data during the beginning of epoch 7. As
shown in Figure 13, the SIRV model can not
only fit the data with the same value of g~ 2
0%, but it also provides insights into just how
infectious the delta variant is compared with
the original variants of the SARS-CoV-2 virus.
Only time will tell if the SIRV model’s predic-
tions for the head and tail of the delta variant
exponential dragon are correct.

Although the 5 peaks in Figure 13 have a
similar appearance, it is important to note that
the third, fourth, and fifth peaks in Figure 13 are
qualitatively different from the first two peaks.
The first peak is caused by the transition from
uncontrolled spread (epoch 1) to the first
period of stricter social distancing (epoch 2).
The second peak is similarly caused by a

transition from relaxed social distancing (epoch
3) to a second epoch 4 of stricter social
distancing. In contrast, the third, fourth, and
fifth peaks, during the middle of epochs 5, 6,
and 7 of Figure 13, are simply exponential
dragons (Fig 6b) that are intrinsic to the SIR
model with a constant infection rate coefficient.
The fitted infection rate constant in epoch 6 is
nearly twice that of the earlier epochs 3 and 5,
indicating a further substantial reduction in
social distancing measures.

The fitted infection rate constant in epoch 7
is ~ 2.8 times higher than epoch 6, consistent
with the delta variant being ~ 2.8 times more
transmissible than the original variants of the
SARS-CoV-2 virus. The SIRV model makes a bold
prediction that the peak caused by the delta
variant is upon us at the end of August 2021
and that the cases per day data should fall off
rapidly during September and October 2021.
Those predictions are based on the increasingly
guestionable assumption that the model pop-
ulation is constant at g =~ 20% throughout the
pandemic (and that the infection rate coeffi-
cient remains constant at k; = k; = 0.89d™"
and the infection rate amongst vaccinated and
recovered individuals is negligible). Only time
will tell if those assumptions remain applicable.

The success of the SIRV model in explaining
and predicting the quantitative behavior of the
spread of COVID-19 from 26 February 2021,
through 27 August 2021, is a significant
validation of the basic SIR model and its SIRV
variant. As students discover, people are not
molecules, but sometimes they behave like
them.
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APPENDIX. SYMBOL GLOSSARY

Table A1. Nonletter symbols.

Symbol Description

[=] A symbol that is pronounced “has units of”
~ Alternate equals sign that means “is approximately”
= Alternate equals sign that means “is defined as”

Table A2. Prefixes, suffixes, subscripts, and superscripts.

Symbol Description

(1) Suffix used to indicate a function of time, e.g., R{t)

0 Subscript naught meaning “zero”; the value of a variable at time zero, e.g., Ny

S Prefix used to indicate a small change in FD algorithms

new Superscript used to indicate the current step in an algorithm, which corresponds to the current row in a spreadsheet
old Superscript used to indicate the previous step in an algorithm, which corresponds to the previous row in a spreadsheet

Table A3. Letter and letter like symbols.

Symbol Description

012,02, 034,... |=| d 013 is the standard deviation of the transition time between epochs 1 and 2, similarly for g3 ...

7 [=] d Mean infectious time, the average time a person is infectious in the SIR and SIRV models

Fia, Pz, Fsay ..o [=] 1 Fq5 is the cumulative probability of the Gaussian transition function between epochs 1 and 2, similarly

for F23 A

11 Fraction immune, the fraction of the model population that is immune from infection

=]1 Herd immunity threshold, the fraction immune required for decline in the number infectious

Fraction infectious, the fraction of the model population that is infectious

Infection rate constants for the COVID-19 SIR and SIRV models in epochs 1, 2,3 ...

Infection rate constant (or coefficient) for all COVID-19 models

Recovery rate constant for the SIR model

Total number of people in the model population

Total number of people in the actual US population

Number infectious in the model population

Number recovered in the model population

Number susceptible in the model population

Number vaccinated in the model population

Number vaccinated in the actual US population

P12 is the probability density of the Gaussian transition function between epochs 1 and 2, similarly for
px3 ...

Fraction of the US population included in the model population (fraction of cases per day that are
reported)

Basic reproduction number of the SIR model, the average number of people infected by an infectious
individual in a completely susceptible population

The infection rate (reported cases per day)

The recovery rate of infected individuals in the model population

The effective vaccination rate of individuals in the model population

The effective vaccination rate of individuals in box s of the model population, similarly for R,; and R, ,

Fraction susceptible, the fraction of the model population that is still susceptible to infection

Time variable in the epidemiological models that starts at t = 0
Doubling time, the time it takes for the number infectious N; to double
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