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ABSTRACT A major challenge for science educators is teaching foundational
concepts while introducing their students to current research. Here we describe an
active learning module developed to teach protein structure fundamentals while
supporting ongoing research in enzyme discovery. It can be readily implemented in
both entry-level and upper-division college biochemistry or biophysics courses.
Preactivity lectures introduced fundamentals of protein secondary structure and
provided context for the research projects, and a homework assignment familiarized
students with 3-dimensional visualization of biomolecules with UCSF Chimera, a free
protein structure viewer. The activity is an online survey in which students compare
structure elements in papain, a well-characterized cysteine protease from Carica
papaya, to novel homologous proteases identified from the genomes of an
extremophilic microbe (Halanaerobium praevalens) and 2 carnivorous plants
(Drosera capensis and Cephalotus follicularis). Students were then able to identify,
with varying levels of accuracy, a number of structural features in cysteine proteases
that could expedite the identification of novel or biochemically interesting cysteine
proteases for experimental validation in a university laboratory. Student responses
to a postactivity survey were largely positive and constructive, describing points in
the activity that could be improved and indicating that the activity was an engaging
way to learn about protein structure.

KEY WORDS protein structure prediction; enzyme; biochemistry; active
learning; undergraduate

I. INTRODUCTION
The Protein Data Bank (1) contains more than 174 000 structures of

biomolecules as of early 2021, and familiarity with protein structures is
necessary for understanding the literature in many subfields of
biology. Experimentally, protein structures are generally solved by X-
ray crystallography, nuclear magnetic resonance spectroscopy,
cryogenic electron microscopy, or, for complex molecular assemblies,
a combination thereof. Advances in experimental methodology,
including automated data collection at synchrotron beamlines,
improved nuclear magnetic resonance instrumentation, and the
‘‘resolution revolution’’ in cryogenic electron microscopy have greatly
accelerated the pace of protein structure determination studies. As
this methodology becomes easier to use, familiarity with protein
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structures has become an essential competen-
cy needed for many types of biological
research. Being able to visualize the relevant
molecular structures improves mechanistic
understanding of enzyme activity, protein–
protein interactions, and regulation of biolog-
ical processes such as transcription and trans-
lation. Connecting protein structure to function
has been identified by the American Society for
Biochemistry and Molecular Biology as 1 of 5
foundational concepts in molecular biology
education, and learning how to relate the
primary sequence to 3-dimensional (3D) struc-
ture is a prerequisite for the associated learning
goals (2).

Learning to interpret protein structures is
therefore one of the fundamental tasks of a
student in an introductory biochemistry course.
This topic is traditionally considered difficult,
and analysis of semantic distance between
fields shows that molecular biology and bio-
chemistry are culturally isolated from other
disciplines (3). Therefore, a large corpus of field-
specific language must be learned starting in
the introductory classes, even without consid-
ering the information-packed graphical sym-
bology used to express chemical structures.
Examples in textbooks and lectures, not to
mention the current literature, interchangeably
switch between different representations of the
same molecules depending on the features
being emphasized. Representations in which all
atoms are shown are generally eschewed
because the distracting level of atomic detail
obscures the overall fold and key structural
motifs and makes it difficult to locate functional
residues without prior knowledge. Space-filling
models are useful for building intuition about
molecular shape and, with appropriate color
coding, surface properties such as charge and
hydrophobicity, but they do not allow visuali-
zation of the protein interior.

Ribbon or licorice diagrams that omit side
chains and individual atoms and represent a-
helical and b-strand secondary structure ele-
ments as coiled helices or flat ribbons, respec-
tively, highlight the 3D organization of the
protein. These diagrams were first systematized
by Jane Richardson in 1981 (4), although similar

drawings had already appeared in individual
structural biology papers. Although every
introductory biochemistry textbook has a
concise explanation of these diagrams, we
recommend Richardson’s original review to
students who are interested in structural
biology: various structural motifs are clearly
explained, numerous instructive examples of
structural motifs are presented, and the beau-
tiful hand-drawn diagrams highlight the human
effort that went into developing this highly
efficient representation scheme. Computer
programs for automating the production of
ribbon diagrams soon followed (5, 6), and
modern Protein Data Bank (PDB) structure
viewers, such as UCSF Chimera (7), PyMOL,
version 1.8 (Schrödinger LLC, New York, NY),
and Visual Molecular Dynamics (8), use these
representations as one of the standard settings.
Several such programs are available online for
free and are relatively easy to install and use.
Here we take advantage of these tools to have
students apply their recently gained knowledge
about protein structure to an enzyme discovery
project with the use of structures predicted
from genomic data.

This activity is linked to an ongoing project in
the lab of RWM, where a major research goal is
the discovery of novel enzymes from genome
and transcriptome data, in particular from
carnivorous plants. These plants have adapted
to grow in nutrient-poor environments by
obtaining much of their nitrogen from protein
in insect prey (9). Carnivorous plants are
expected to have a variety of proteases with
different activities, because they rely on these
enzymes for digestion as well as the more
typical functions of plant proteases: cellular
housekeeping, defense against insects and
pathogens, and hydrolysis of seed storage
proteins. In the Venus flytrap (Dionaea musci-
pula), expression of at least 1 digestive protease
is upregulated in response to prey stimuli (10).
As expected, the genomes of the Cape sundew
(Drosera capensis) (11) and the Albany pitcher
plant (Cephalotus follicularis) (12) have yielded
many new proteases—so many, that the main
problem is choosing appropriate targets for
experimental investigation. In general, determi-

Protein structure active learning module

Kelz et al. The Biophysicist 2022; 3(1). DOI: 10.35459/tbp.2021.000209 50

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-01-15



nation of experimental structures is a bottle-
neck for enzyme discovery from nucleic acid
sequencing data. Advances in sequencing
methodology have outstripped even the rapid
pace of development in structural biology
methods, in part because of the difficulties
inherent in sample preparation. Preparing
protein samples of sufficient quantity and
purity for structural studies is time consuming
and expensive and requires extensive training
and experience, as does interpretation of the
data. Performing these experiments is imprac-
tical for every putative enzyme discovered from
a genome or transcriptome. Therefore, we use
structural models derived from sequence data
with protein structure prediction tools such as
Rosetta (13, 14) and I-TASSER (15). Although the
predicted structures do not capture every
detail, particularly when considering side chain
conformations, we find that they are highly
reliable for predicting the overall folds of
enzymes belonging to well-known structural
classes, including the cysteine proteases used
in this activity. This capability was illustrated by
the crystal structure of a cysteine protease from
D. muscipula (16), which was solved after we
predicted its structure (17). Our predicted
structure has excellent overall agreement with
the experimental one and captures all of the
functionally important features of the active
site. Results such as this, as well as ongoing
validation efforts such as the CASP competition
(18), provide evidence that structures predicted
in this manner are sufficient to verify functional
folds and active sites for well-known enzyme
classes. With recent machine learning–based
advances in protein structure prediction such
as AlphaFold (19) and RoseTTAFold (20), it is
now possible to obtain large numbers of
predicted structures for members of an enzyme
class of interest, such that the activity can be
updated frequently or tailored to fit the theme
of a particular class.

Predicting structures en masse for enzymes
discovered from genomic data provides a
foundation for predicting which proteins will
have functional differences from well-charac-
terized members of the same enzyme class;
however, examination of the structures and

prediction of functionality is not easily auto-
mated. Some features, such as extra domains,
are apparent from the sequence alone and
could be detected with standard software tools.
Others are more subtle and require examina-
tion by a human with some training in protein
structure analysis. For instance, even relatively
small occluding loops can dramatically alter
substrate specificity by partially blocking the
active site cleft, and these cannot necessarily be
identified in sequence space because they
interact with the active site cleft in 3 dimen-
sions. Fortunately, given an appropriate refer-
ence protein, undergraduate biochemistry
students can learn to identify such features
relatively quickly in the context of a class
activity. Here we describe such an active
learning module for students in an undergrad-
uate biochemistry class. Students received
training in protein sequence and structure
analysis and then worked individually to
identify similarities and differences between
papain, a well-characterized plant cysteine
protease, and a novel protein from either D.
capensis, C. follicularis, or the extremophilic
microbe Halanaerobium praevalens (21).

II. SCIENTIFIC AND
PEDAGOGICAL BACKGROUND

A major challenge in teaching protein
structure interpretation is that the connection
between the intermolecular forces holding
proteins together and the 3D structures that
result is abstract. Furthermore, many students
enter introductory biochemistry with limited
3D visualization skills, such that practicing a
task that requires manipulating protein struc-
tures in a virtual 3D environment is helpful. The
examples presented in introductory textbooks
are often selected to present a wide range of
different structural motifs, which provides a
good overview of existing structures but can
come across as disconnected. Here we intro-
duce a particular enzyme class, cysteine prote-
ases (MEROPS family C1) (22), and invite
students to look for relatively subtle structural
differences. We selected cysteine proteases
because there are a large number of charac-
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terized structures for this enzyme class in the
PDB, making structure prediction very useful
for determining overall folds and relative
domain orientations. At the same time, there
are no shortage of newly discovered and
uncharacterized cysteine proteases, because
many plants have multiple paralogs of these
common defensive proteins (23, 24), of which
only a few have been studied in detail. D.
capensis has 44 cysteine proteases (17), which
we have previously modeled and categorized
according to the classification scheme of
Richau et al. (23), whereas C. follicularis has at
least 16 (12). Our protein set consisted of the 16
novel papain-like cysteine proteases from C.
follicularis, matched with 17 cysteine proteases
from D. capensis, whose structural features had
already been examined by the Martin group.
One additional cysteine protease from the
extremophilic microbe, H. praevalens, was also
included to assess the robustness of this
characterization method when examining pro-
teins that are less closely related. Each student
was assigned a unique protease from this set of
34, and all students used the crystal structure of
papain from Carica papaya [UniProt ID, PA-
PA1_CARPA; PDB ID, 9PAP] (25) as a reference
protein to compare structural features. The
main objectives of this class activity were to
introduce students to the basics of protein
structure, to help them examine and manipu-
late protein structures in a virtual 3D environ-
ment, and to provide an opportunity to
participate in a live enzyme discovery research
project.

Our active learning module was motivated
by the success of Course-based Undergraduate
Research Experiences (CUREs), which have
numerous benefits for students, including
making research experiences more equitably
available to all students (26), increasing scien-
tific affect (27), improving scientific skills (28),
and increasing student retention (29). Further-
more, participation in CUREs early in their
university experience improved the odds of
students graduating with a science, technolo-
gy, engineering, or mathematics degree and
improved student GPAs when they graduated
(30). Shorter term gains from CUREs included

improved content knowledge, increased prob-
ability of pursuing longer term, apprenticeship-
based research experiences before graduation
(29, 31), and abrogation of some so called
‘‘achievement gaps’’ for minoritized students
(32). Traditionally, CUREs have been imple-
mented either in lab courses or in the lab
sections of theory courses. CURE courses often
have limited enrollment and are usually avail-
able only to upper-division students. However,
a variety of research-based active learning
activities have recently been developed, some
of which also include opportunities for students
to contribute to community resources (33) or
citizen science initiatives (34). A major objective
of this activity is to provide an introduction to
an active research project very early in the
undergraduate experience. Given the numer-
ous benefits of exposing students to research
experiences, we sought to create a shorter
research experience on the basis of our enzyme
discovery research, embedded within a lecture
course typically taken by first-year undergrad-
uates.

Aside from the educational benefits of the
class activity itself, this experience gives stu-
dents an opportunity to learn about ongoing
research at their university. It also helps them
see their instructors as scientists, as well as
teachers, and provides an opening for interest-
ed students to join a research group as early as
their first year at university. Over the last few
years, a total of 12 undergraduates (including 3
coauthors on this paper) have joined the
authors’ enzyme discovery efforts by indepen-
dent study (course credit for research), summer
research programs after performing various
early versions of this activity, or both. We have
found that this type of activity enables
recruitment of students at an earlier career
stage, compared with the more typical situa-
tion in which upper-division students join labs
either as part of a formalized capstone course
or after being exposed to research topics in
more specialized classes. In the event that not
every student who is interested in performing
follow-up research can be accommodated
because of space or enrollment constraints,
which can happen after announcing the
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opportunity to a large class, it is useful to have
a list of other faculty who offer undergraduate
research experiences. In the future, we also
plan to develop a full CURE course based on
this type of research, which would make it
possible for more students to participate in an
extended study of novel enzymes and poten-
tially become coauthors on a publication.

As a pilot for the large class, we first
performed the activity by Zoom with under-
graduate students in Chem341L (Physical
Chemistry Lab), an upper-division course at
Fisk University, a private historically Black
university in Nashville, TN (October 2020). There
is precedent for sophisticated protein structure
activities in upper-division biophysical courses
such as this. For example, undergraduate
students assigned to solve the crystal structure
of a small protein from its electron density map
were very successful even without knowledge
of the protein sequence, modeling ambiguous
residues using chemical knowledge to identify
local interactions, and in some cases producing
a better result than the original structure (35).
Other activities have focused on the use of
molecular dynamics tools to teach structure
visualization, ligand interactions (36), and non-
covalent interresidue interactions (37).

In this activity, graduate students taught a
lesson introducing protein structure concepts
in general and important structural features of
proteases in particular. The lecture material
focused on secondary and tertiary protein
structure, with examples of types of secondary
structures found in globular proteins as well as
the importance of intrinsically disordered pro-
teins. An informal and highly interactive class
discussion also took place around current
protease projects in the lab of RWM, including
the carnivorous plant proteins in this dataset, as
well as the SARS-CoV-2 main protease (Mpro),
which served as a transition into the hands-on
activity. The goal of the activity was to help
students solidify their knowledge and exercise
what they learned from the lecture, using their
new insight to help discover novel structural
features in papain-like protein structures. Be-
cause of the small class size (9 students) and
the students’ relatively advanced knowledge of

molecular structure, each student was able to
examine multiple structures and compare
notes about different protein features, includ-
ing pro-sequences, granulin domains, and
differing degrees of active site cohesion.
Three-dimensional–printed structures of select-
ed proteins were provided, because there is
evidence that examining 3D-printed models of
protein structures helps students build accurate
mental models of protein structure (38).

To incorporate this module into a large
lecture course, we created a shorter version
that we implemented in 2 sections of a lower
division biochemistry course. This class had a
large enrollment (356 students in one section
and 252 students in the other section) and was
required for all students in several majors,
including Biology, Pharmaceutical Sciences,
Nursing, and Public Health. The course is taught
as a one-quarter survey course of major
concepts in biochemistry, including amino acid
properties and protein structure and function.

In the rest of this paper, we describe the
design of lecture materials and the cysteine
protease survey and discuss the results of the
activity and its assessment, which we hope will
be useful for other biochemistry educators. The
survey materials and the protein models used
are provided in the Supplemental Material.

III. MATERIALS AND METHODS
A. Protein sequences and structural
models

Sequence alignments were performed with
Clustal Omega (39), with settings for gap open
penalty ¼ 10.0 and gap extension penalty ¼
0.05, hydrophilic residues ¼ GPSNDQERK, and
the BLOSUM weight matrix. For the D. capensis
proteases, the presence and position of a signal
sequence flagging the protein for secretion was
predicted by SignalP 4.1 (40, 41). An initial
model was created for each complete sequence
by the Robetta (13) implementation of Rosetta
(14). Any residues not present in the mature
protein were removed, disulfide bonds identi-
fied by homology to papain were added, and
the protonation states of active site residues
were fixed to their literature values. Each
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corrected structure was then equilibrated in
explicit solvent under periodic boundary con-
ditions in NAMD (42) by the CHARMM22
forcefield (43) with the CMAP correction (44)
and the TIP3P model for water (45) after this
minimization, each structure was simulated at
293K for 500 ps, with the final conformation
retained for subsequent analysis. The published
structure of papain (PDB ID: 9PAP) (25) was
used as the initial starting model (after removal
of heteroatoms and protonation by REDUCE)
(46), and similarly equilibrated before use as a
reference.

For the proteases from C. follicularis and H.
praevalens retrieved from UniProt (47) (Supple-
mental Table S1), structure prediction was
performed by I-TASSER (15). Signal sequences
were not removed from these proteins, to leave
them as a point of discussion for the class
activity.

The sequence alignments, minimal quality
control (e.g., removal of proteins lacking the
active site residues), and molecular modeling
were performed by the research team in
preparation for the activity; students were
provided with sequences and structural models
for their proteins.

B. The cysteine protease survey
The cysteine protease survey was designed

to guide students through the process of
comparing a novel cysteine protease structure
to that of papain in UCSF Chimera. Questions
identified characteristics like various secondary
structure locations, blocked active sites, and
relative lengths of N- and C-termini. The full
survey can be found in the Supplemental
Material.

C. Postactivity survey
After completion of the activity, students

were asked to answer a questionnaire about
their experience. The survey was administered
in Canvas as a regular weekly activity for the
class. The questions were: ‘‘1. In how many
classes at UCI (prior to this one) did you have
the opportunity to apply the concepts you
were learning about in class to a research
project? 2. Please tell us what you liked best

about the project. 3. Please tell us what you
liked least about the project. 4. Do you agree or
disagree with the following statement: This
research project helped me understand protein
structure-function better. 5. Do you agree or
disagree with the following statement: This
research project should continue to be a part of
this course. 6. How can this research project be
improved?’’

IV. RESULTS AND DISCUSSION
A. Preactivity training

During the class period before the protease
discovery activity, a general introduction to
protein structure was presented. The concepts
of primary, secondary, and tertiary structures
were introduced, along with a primer on
interpreting ribbon diagrams. Examples are
shown in Figure 1.

Before the in-class exercise, an introductory
lecture on cysteine protease discovery was
presented, taking approximately 20 min. This
lecture was delivered by a graduate student
directly involved in the research and began
with a description of the motivation for
discovering new cysteine proteases. Examples
presented included finding highly specific
proteases to cleave expression tags or break
down proteins into smaller peptides for bot-
tom-up proteomics and, on the other hand,
finding very general proteases to break down
biofilms and cleave protease-resistant aggre-
gates such as amyloid fibrils. The overall
workflow of the project was summarized,
emphasizing the large number of proteases
discovered from the D. capensis genome and
how molecular modeling could help narrow
down the targets chosen for experimental
characterization. The graduate researcher also
explained how the students’ responses would
be used by the group: their answers regarding
which proteins have features that are signifi-
cantly different from papain’s will be aggregat-
ed and used in the manner of crowdsourcing
data. Because 509 students completed the
activity and there were only 34 unique proteins,
each protein was subject to independent
analysis from multiple participants. Although
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students were allowed to work together in
small groups, each student was randomly
assigned a different protein, so it is likely that
most of the observations of a given protein
were independent. This method enabled the
research team to identify potentially interesting
target proteins that multiple observers indicat-
ed had significant differences from the refer-
ence protein.

Finally, some examples of D. capensis cyste-
ine proteases with functional features different
from papain’s were shown. During the initial
training, it was pointed out that although the
correlation between structure and function is
not perfectly predictable, enzymes that are
structurally very similar are likely to be func-
tionally similar as well. Therefore, enzymes that
structurally resemble papain are likely to have
similar activity to this well-characterized prote-
ase, whereas enzymes with notable differences
of the types described in the background
lecture are more likely to provide novel
functionality. In future versions of the activity,
we plan to ask students specifically whether
their assigned protein is a good candidate for
further study and to explain their reasoning.

The example proteases are shown in Figure
2. The first, aspain, has an unusual active site
configuration with an aspartic acid taking the
place of the canonical asparagine and a large
occluding loop partially blocking the active site,
potentially modulating substrate specificity.
The second, DCAP_6097, has a C-terminal
granulin domain, which is common in proteas-
es that cleave storage proteins during seed
sprouting. Both contain examples of structures
students may encounter when studying novel
papain-like proteases. Students were also in-
structed in how to compare aligned sequences
and locate particular amino acid residues on
the protein structure. Overall, the background
material took one full 50-minute class period,
with a second class period devoted to the
active learning activity. Students were then
allowed 2 extra days to work on the survey
before having to submit their responses; this
arrangement provided some flexibility, but
more than half of the responses were received
by the end of the designated activity day. In
total, students were given about 5 d to
complete the activity.

B. In-class exercise
To provide practical experience comparing

structurally related proteins, we assigned each
student a protein model from our set of
predicted structures, which they were instruct-
ed to compare to papain. Every student was
given 2 PDB files to download: the reference
papain structure and the predicted structure of
a novel protein. An example is shown in Figure
3. The structure of papain (Fig 3A) and the
model of the novel protein DCAP_4793 (Fig 3B)
are very similar in overall fold, and differences
are difficult to determine when examining
them separately. However, overlaying them
(Fig 3C) reveals some potentially functionally
relevant differences. The region labeled 1
shows the difference in length of 2 b-strands
and the loop connecting them: both the
strands and the loop are longer in DCAP_4793
than in papain. The area labeled 2 shows a
short a-helix in DCAP_4793 that is absent in
papain. Both proteins have a long helix ending
in the area labeled 3, but it is longer in papain

Fig 1. Papain secondary structure examples presented in presurvey
lecture. (A) All a-helices (red) displayed as ribbons. (B) One a-helix
(red) displayed with all atoms shown as stick models. (C) All b-
strands (blue) displayed as ribbons. (D) Two b-strands (blue)
displayed with all atoms shown as stick models.
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than in DCAP_4793. Differences in backbone

position of the long loops are also observed

(e.g., in the region labeled 4), but these are

considered to be a result of variable dynamics

in these structural elements rather than persis-

tent, meaningful differences. Discussion of

which of these structural differences are likely

to be functionally relevant was arguably the

most difficult part of the exercise, and at the

same time led to valuable conversations about

the types of judgement calls made by structural

biologists and how protein structure can serve

as a starting point for hypotheses about
function.

C. Detection of novel protease
features

Not all protease features were interpreted in
the same way; some were correctly identified
by most participants, whereas others received
mixed responses of varying accuracy. Students
did, for example, correctly match most large a-
helices to those in papain (Fig 4A,D) but often
struggled to identify partially or fully blocked
active sites (Fig 4C,D). Furthermore, more
ambiguous structural features, like papain’s
small sixth a-helix (Fig 4B,D), were identified
with mixed levels of success. Representative
data for several of these questions are shown in
Figure 4: Q3: ‘‘Is there an a-helix on your
structure that lines up with the first a-helix in
papain? (yes/no)’’; Q4.5: ‘‘Is there an a-helix on
your structure that lines up with the sixth a-
helix in papain? (yes/no)’’; Q13: ‘‘Do you see a
feature that is partially or fully blocking the
active site? (yes/no)’’; Q17: ‘‘What differences
does your protein have when compared to
papain that were either not fully captured or
not addressed at all in earlier questions? (free
response)’’. For DCAP_5945 (Fig 4A), Q3 and
Q13 were answered accurately, because this
protein does have an a-helix that matches
papain’s first a-helix and does not appear to
have a blocked active site. In the free response
to Q17, most students also suggested the
presence of DCAP_5945’s granulin domain,
describing a much longer sequence and extra
secondary structure elements. DCAP_5945’s
Q17 response bar shows that a number of
students responded with some identifying
description of this granulin domain (yes they
did or no they did not). These responses
demonstrate what students did very well:
identify large structural features that were
clearly explained in presurvey presentations.
Other questions, however, did not receive such
consistent answers. Papain’s sixth a-helix is an
example of a more ambiguous structural
feature, whose presence or absence in other
proteins is subject to interpretation. For exam-
ple, DCAP_6547 (Fig 4B) does contain an a-helix

Fig 2. Example cysteine proteases, aligned with papain (red),
presented to students before taking the in-class survey. (A) Aspain:
DCAP_3968 (orange). Aspain’s unusual active site (top inset)
replaces the typical asparagine (dark green) of papain (bottom
inset) with aspartic acid (lime green). Its occluding loop, which
partially blocks the active site, is indicated by an arrow. Other active
site residues: cysteine, gold/yellow; histidine, purple/magenta for
papain and aspain, respectively. (B) DCAP_6097 (dark grey).
DCAP_6097’s C-terminal granulin domain, indicated by an arrow,
extends well beyond the rest of the papain-aligned structure.
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near papain’s sixth a-helix, but a lack of
overlapping residues and some variation in
local torsion angles make it difficult to judge
whether these are truly aligned; in this case,
both ‘‘yes’’ and ‘‘no’’ are reasonable answers to
Q4.5. Additionally, most students did not
recognize a large N-terminal pro-sequence
blocking the active site in many proteins,
answering ‘‘no’’ to Q13; this can be seen in
the responses given in Figure 4B and D. When
viewing the accuracy of student responses as a
whole (Fig 4D), clear differences emerge
between questions. Question Q3 was answered
with relatively high levels of accuracy, whereas
Q4.5 received responses of mixed accuracy,
although several proteins had no unambigu-
ously correct answer. In contrast to the largely
accurate responses to Q3 and Q4.5, in Q13,
students were able to identify active sites that
were not blocked with good accuracy but did
have difficulty identifying blocked active sites,
which suggests that more instruction should be
given on this topic in future implementations
of the activity.

Discrepancies may have a number of causes,
including the inherent difficulty of capturing
snapshots of certain dynamic protein features
(e.g., very short a-helices or flexible termini),
differences in survey interpretation, and use of
structural cues, rather than Chimera’s predictive
software for secondary structure identification.
For example, the ambiguous alignment of
papain’s sixth a-helix in several proteins (Fig

4B,D) is likely a result of the torsion angle cutoff
used to define true a-helices in Chimera;
despite the clear visual alignment of these
coil-like structures, part or all of their residues
may not be considered a-helical in nature.
These results speak to the importance of both
clarity in what is being asked of participants, as
well as emphasis on natural variation of the
structural patterns they are asked to character-
ize. For many of these features, however,
different responses are simply a result of varied,
but equally valid interpretations of ambiguous
data. This kind of harmless variance contributes
to the strength of crowdsourced studies and
allows researchers to note potentially mobile or
disordered regions. Consequently, future itera-
tions will work to refine the organization and
clarity of presurvey presentations and survey
questions, without biasing students’ answers.
Another modification that could improve stu-
dents’ experience as well as help the instructors
identify points of confusion would be to ask
students to explain their answers regarding
whether particular structural features are pre-
sent or whether their assigned protein is
different from papain or not.

On the research side, student answers will be
used by the research group in aggregate. The
approach we are using relies on a crowdsourc-
ing model, where multiple students answer
questions about each protein independently.
Using the data effectively therefore depends on
the observation that there is only 1 right and

Fig 3. Comparison of the reference papain structure to a molecular model of a new protein, DCAP_4793. (A) The papain structure is shown
in red. Circled areas (cyan) highlight differences in compared with DCAP_4793. (B) The molecular model for DCAP_4793, generated with
Rosetta, is shown in blue. (C) An overlay of the 2 proteins in panels A and B highlights similarities and differences described in the main
text. The active site residues in both proteins are shown as space-filling models with color codes as follows: cysteine, gold/yellow; histidine.
purple/magenta; asparagine, dark/lime green for papain and DCAP_4793, respectively.
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many possible wrong answers, such that the
consensus is more likely to be correct than any
one answer chosen from the class. This
methodology was first introduced by Francis
Galton in 1907 (48) and later elaborated for

anthropological studies where the reliability of
individual informants is unknown (49). Modern
versions have been used to solve a variety of
problems in fields ranging from engineering
and computer science to text analysis (50, 51).

Fig 4. Example survey questions and student responses using proteins aligned to papain (red). (A) Examples of accurate and informative
student responses using DCAP_5945 (light grey). (B) Example of ambiguity in student responses with DCAP_6547 (black). (C) Example of
inaccuracy in student responses with C. follicularis protein A0A1Q3AYB2 (dark grey). (D) Accuracy of all student responses to Q3, Q4.5, and
Q13. All 34 proteins are shown in each panel, and those whose examples appear in panels A, B, and C are indicated by colored stars
(DCAP_5945, light grey; DCAP_6547, black; A0A1Q3AYB2, dark grey). Black brackets below each graph show which subsets of proteins
contain the feature in question.
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Therefore, proteins that have been identified by
several students as having novel features can
be selected for further investigation, whereas
those that are agreed to be similar to the
reference protein do not merit further scrutiny.
Proteins that generate an unusually high level
of disagreement may also be of interest, both
from the standpoint of improving the instruc-
tion and because they may have interesting
features that were not captured by the survey
questions (which are made up in advance of
detailed examination of the novel proteins). Of
course, this strategy is vulnerable to systematic
errors if everyone in the class shares a common
misconception, making the quality of the
instructional materials critical for the research
outcome as well as for the students. Because
the student results are used in aggregate, the
students will be acknowledged as a group in
the publication (e.g., Bio98, Winter 2020).
However, students who are interested in
further participation in enzyme discovery re-
search are offered the opportunity to sign up
for research credits. So far, 7 undergraduates
have become coauthors on related projects by
this mechanism. In our experience, the students
recruited in this way are at an earlier stage in
their degree program and are more likely to
belong to historically underrepresented demo-
graphic groups compared with those identified
by more traditional methods.

To encourage open discussion and to min-
imize stress from having to produce correct
descriptions of sometimes ambiguous results,
this activity was graded only for participation:
full credit was granted for submitting a screen-
shot of the assigned protein model. After
completion of the activity, students were given
feedback en masse in a class presentation by
the graduate student researchers. The ‘‘cor-
rect’’ or expert answers referred to in Figure 4
were generated by having 2 experienced
undergraduate researchers (with at least 6 mo

of experience with protein structure analysis)
answer the questions independently. Conflict-
ing answers were then adjudicated by a
graduate student. To provide feedback within
1 wk and to be consistent with how we
envision using these data for research in the
future, this time-consuming process was initial-
ly performed only for a subset of enzymes for
which several students described features
worthy of further investigation. The full set of
answers presented in part in Figure 4D was
generated later, to assess which aspects of our
training module could be improved. The
examples chosen for the follow-up presenta-
tion included 1 protein that did not appear to
be significantly different from papain and
several that had novel features. For example,
proteins with occluding loops, granulin do-
mains, pro-sequences, and extra or missing
secondary structure elements were shown and
the relevant features pointed out. Other
instructors may prefer to give each student
personalized feedback, although this requires a
tradeoff between using new, research-relevant
examples and the research team being able to
complete the analysis of every protein quickly
enough to provide feedback to the students
while the activity is fresh in their minds.

D. Student experience assessment
Students’ responses to the questions about

their experience with the activity (N¼ 359) are
summarized in the tables. Results are not
mutually exclusive because multiple features
were coded from each answer where applica-
ble. Therefore, the number of responses in each
category does not necessarily add up to 100%.
Table 1 shows in how many classes students
were given the opportunity to apply concepts
learned in class to a research project. Most
students had never performed a similar activity
in a class before, although some reported as
many as 3 such experiences. Table 2 summa-
rizes the most common responses given for
what students liked best about the project. The
most common responses cited the interactivity
of the activity, seeing how concepts learned in
class applied to real-world examples, and
having the opportunity to contribute to an

Table 1. In how many classes at UCI (prior to this one) did you have
the opportunity to apply the concepts you were learning about in
class to a research project?

0, n (%) 1, n (%) 2, n (%) 3, n (%) 4, n (%) �5, n (%)

243 (67.7) 54 (15.0) 35 (9.8) 17 (4.7) 4 (1.1) 6 (1.7)
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ongoing research project. Many students men-
tioned applying their knowledge to a real-
world problem (25.9%) or knowing their work
would contribute to an active research project
(25.1%) (e.g., ‘‘I really enjoyed putting what I
have learned to use! It really motivated me to
work hard on that assignment and to pay
attention in lecture, as I knew it had pertinent
information I would need.’’ Others focused on
the interactive format of the exercise (22.8%)
and the ability to view the proteins in 3D,
examine them from different angles, and
correlate sequence with structural features
(24.0%), none of which are possible with a
picture in a textbook. ‘‘What I like the most
about this project is that I got to look at the
protein in 3D, and it is very interesting. On the
textbook or online, the protein are always 2D
and we cannot spin it around to see its
structure.’’ Some students specifically stated
that doing the activity helped them understand
protein features (16.4%), and others indicated
that it was fun (8.4%). Roughly 15% cited using
the UCSF Chimera software as one of their
favorite aspects of the project, with several of
them explaining that they enjoyed learning a
tool that is used by researchers working on
protein structures. ‘‘I loved the program
Chimera and how easy it was to visualize the
protein. It was very interesting to compare the
different structures to each other based on
their sequencing. I felt like a real scientist’’ and
‘‘I liked actually getting to use software that
professionals use! It was also nice to apply my
own knowledge on something useful, it makes
me remember what I’m learning more effort-
lessly and I enjoy it.’’ Around 11% mentioned

some aspect of the instruction as among their
favorite features, including the topic lectures by
the instructor or graduate students or the
survey activity itself.

Table 3 summarizes the most common
responses given for what students liked least
about the project. The most common respons-
es focused on some aspect of the instructions
being confusing or hard to follow (33.4%), or
difficulty or frustration with the Chimera
software (17.8%), although many also said that
they got used to the software with practice.
‘‘What I liked least about the project was that
the instructions were not always clear. While
doing the survey during lecture time, I found
myself confused by the instructions and I feel
that affected the responses I submitted into the
survey.’’ ‘‘I did not like having to download
Chimera and go through that entire process for
only a one time use.’’ ‘‘Getting used to using
Chimera was my least favorite part, but it was
also part of the learning experience.’’ ‘‘It was
somewhat tough to get acquainted with the
program in the beginning, but practice over
the week helped with this.’’ Some students
thought that the activity was rushed and they
would have preferred either more class time or
more time to work with their groups (3.1%). A
few students did not like the open-ended
nature of the assignment given that it is part
of a live research project. Some were concerned
about possibly providing incorrect information
for the project (1.4%) or frustrated about not
finding out the correct answer at the end
(1.7%). ‘‘I didn’t like how stressful it was to
think about how it could affect real research if
we got a part incorrect.’’ ‘‘The right answer is

Table 2. Please tell us what you liked best about the project (topics from free response).

Real
world, n (%)

Research,
n (%)

3D,
n (%)

Interactive,
n (%)

Understand better,
n (%)

Chimera,
n (%)

Instruction,
n (%)

Fun,
n (%)

93 (25.9) 90 (25.1) 86 (24.0) 82 (22.8) 59 (16.4) 55 (15.3) 38 (10.6) 30 (8.4)

Table 3. Please tell us what you liked least about the project (topics from free response).

Instructions,
n (%)

Chimera,
n (%)

Blank,
n (%)

Survey design,
n (%)

Rushed,
n (%)

No right answer,
n (%)

Stressed,
n (%)

120 (33.4) 64 (17.8) 57 (15.9) 32 (8.9) 11 (3.1) 6 (1.7) 5 (1.4)
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not known.’’ ‘‘I wish I could have been able to
look at other proteins gathered from the
project to see what they looked like.’’ However,
the total number of negative responses to
participation in an active research project with
no known answer (3.1%) were far outweighed
by the positive ones described above (25.9%
‘‘real world experience’’ þ 25.1% ‘‘research’’ ¼
51.0%). About 16% of respondents specifically
stated that they did not have a least favorite
part or that they liked everything about the
exercise (blank responses were not included in
this category). The most commonly given
suggestions for improvement focused on mak-
ing the instructions more clear (Table 4).
Another idea that was mentioned frequently
was to allow students to analyze their proteins
as a team. Finally, one student commented that
the activity was difficult because of color
blindness, which is a useful reminder that
instructions for changing the default colors in
Chimera should be specifically discussed in the
future. Overall, students indicated that this
activity helped them understand protein struc-
ture and function (Table 5) and should continue
to be a part of this course (Table 6). As such,
future iterations of this activity will implement
suggestions described in Table 4 to make it a
more engaging and informational part of their
curricula.

V. CONCLUSION
This interactive exercise is adaptable for use

in both smaller, upper-division and larger

introductory biochemistry courses and can
serve as an early exposure to current research
projects; it could also be repeated after
additional training with more advanced mate-
rial. It enables students to use fundamental
knowledge of protein secondary structures and
motifs gained from lectures to build new skills
actively that are essential for more advanced
study and participation in research on structur-
al biology and protein function. Student
feedback after participation in the in-class
activity was generally positive. In particular,
students indicated that the potential for the
work conducted in class to affect real-world
research benefited their short-term engage-
ment with the material and bolstered their
sense of the value of investing in learning the
information long-term. Criticism was primarily
centered on actionable areas of improvement,
such as providing more detailed instructions for
using the software tools. We expect that future
iterations will further benefit from tempering
student expectations about the process and
continuing to improve clarity in both the
presentations and survey by conducting a
separate analysis of how interpretations could
lead to inconsistent answers. Increased partic-
ipation and further development in this type of
pedagogical tool will serve not only to improve
students’ educational experience, but also
expedite the pipeline for discovering new
enzymes that are worthy of experimental
validation, a particularly relevant activity in
light of recent developments in protein struc-
ture prediction. A full description of how the
crowdsourced data are used to help streamline
the enzyme discovery process will be the topic
of a forthcoming publication. Equally impor-
tantly, we find that this activity serves as a
mechanism to recruit undergraduate research-
ers at an earlier career stage.

Table 4. How can this research project be improved (topics from
free response)?

Clearer
instructions, n (%)

More
feedback, n (%)

Chimera video
or demo, n (%)

116 (32.3) 28 (7.8) 27 (7.5)

Table 5. Do you agree or disagree with the following statement: This research project helped me understand protein structure/function
better (choose one).

Strongly agree,
n (%)

Agree,
n (%)

Mildly agree,
n (%)

Mildly disagree,
n (%)

Disagree,
n (%)

Strongly disagree,
n (%)

72 (20.1) 170 (47.4) 96 (26.7) 11 (3.1) 5 (1.4) 5 (1.4)
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