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ABSTRACT Structural biology describes biological processes at the molecular
level and is an integral part of undergraduate study programs in molecular
biosciences. Students are often fascinated by the visualizations created by molecular
graphics software, which allow them to see the molecular world for the first time.
Today, molecular visualization and structural analysis do not require expensive high-
end computers but can be performed on the students’ own laptops and are
therefore highly suited for active learning approaches. We have designed a
semester-long learning path that integrates molecular graphics and structural
analysis using PyMOL into an undergraduate course in biomolecular structure and
function. Compared to stand-alone PyMOL introductions, the semester-long
learning path allows for an improved pedagogical design. The path progressively
introduces more advanced functions in relevant scientific contexts and allows for
spaced repetition. Advanced analysis functions in PyMOL are available only via the
command line, so the learning path also teaches basic scripting and serves as an
accessible introduction to computational thinking because a few lines of code can
produce stunning results. Student surveys carried out at the end of the course
suggest that the learning path supported the ability to perform structural analysis to
a high degree. Moreover, a simulated exam showed that almost all students were
able to carry out basic visualization tasks using PyMOL scripts, while three-quarters
could undertake advanced structural analysis after following the course. In summary,
integration of molecular graphics software with teaching of structural biochemistry
allows a hands-on approach to analyzing molecular mechanisms and introduces
biologically oriented students to computational thinking.

I. INTRODUCTION
The nearly 200,000 structural models in the Protein Data Bank (PDB)

constitute a treasure trove for biochemistry. This resource will only get
richer as the pace of structural biology accelerates due to advances in
cryo-electron microscopy (1) and computational structure prediction
(2, 3), which have provided structural models for whole proteomes (4).
This implies that a structural understanding of biomolecules is no
longer a specialized topic but rather an integral part of biochemistry.
Consequently, all scientists working in the molecular biosciences will
need to know how to analyze and evaluate structural models at some
level. To accomplish this, an undergraduate degree program in the
molecular biosciences should not only provide students with a
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theoretical understanding of the structural
basis of biochemistry but also equip them with
the tools necessary for structural analysis.

A. Scientific and pedagogical
background

Structural analysis of biomolecules relies on
molecular graphics software. Various programs,
such as RasMOL (5), Swiss PDB Viewer (6), Jmol
(7), and UCSF Chimera (8), have historically
allowed users to visualize atomic coordinates in
various representations and create stunning
illustrations (9). These programs allow the user
to navigate structures and focus on features of
functional relevance. Advanced programs have
built-in analysis tools used for interpretation of
structural models, including measurement of
interatomic distances, identification of hydro-
gen bonds and salt bridges, mapping of
contacts between molecules, structural align-
ment of different models, and mapping of
physical properties, such as surface charges,
onto the structure. In the popular program
PyMOL (10), most common functions are
available via the graphical user interface (GUI).
Advanced functions, however, require text
commands that can be combined into elabo-
rate analysis scripts using procedural program-
ming (11, 12). The use of molecular graphics
software is a key skill set that allows structural
interpretation of molecular mechanisms and
formulation of new hypotheses.

The constructivist theory of learning posits
that knowledge cannot be passively transmit-
ted from educator to learner but must be
constructed anew in the mind of the learner.
This has led to a range of ‘‘active learning’’
approaches, where the learners are guided
through activities that allow them to rediscover
the material for themselves (13). A large body
of evidence shows that students learn better
when they are active rather than passive (14),
although students tend to underestimate the
benefits due to the greater mental effort
required for active learning (15). However,
experimental structural biology is time con-
suming and requires expensive equipment and
is thus difficult to implement in undergraduate
classes. In contrast, molecular graphics software

is run on standard laptops. Moreover, PyMOL is
available at no cost for educators and students
as an ‘‘Educational-use-only’’ version (https://
pymol.org/edu). Therefore, structural analysis
and visualization can be taught actively even in
undergraduate classes with hundreds of stu-
dents, using the students’ own hardware.
Moreover, exercises can be designed to simul-
taneously build structural understanding and
acquire useful research skills. Such skills can
readily be put to use in individual research
projects by advanced undergraduate students.
For example, PyMOL was recently used in an
‘‘Undergraduate Research Laboratory Experi-
ence’’ where students assigned functions to
targets from the Protein Structure Initiative (16).

There are several published examples of
using PyMOL to analyze protein structures in
a university study setting. Lineback and Jansma
(17) used PyMOL to investigate the structures
and homology between myoglobin and hemo-
globin. Rigsby and Parker (18) also used
hemoglobin as an example to explore ligand
binding, while Allred et al. (19) used PyMOL to
investigate the pH dependence of the interac-
tion between immunoglobulin G and protein A.
Finally, Simmons et al. (20) used PyMOL to
investigate the impact of disease-associated
mutations in 4 proteins. All these published
teaching materials are intended to be used as
single sessions, which resembles the way we
originally taught the use of molecular graphics
software. However, we observed several prob-
lems with this approach that we attribute to
the single-session format. First, modern molec-
ular graphics software has so many functions
that students are easily overwhelmed by
information if everything must be given in a
single session. This left us with the unenviable
choice of either omitting essential elements or
moving at a pace that many students cannot
follow. Second, introducing structural analysis
in a single session typically also means limiting
it to a single scientific context. It is rarely
possible to use all the needed tools in a
scientifically relevant way in a single session.
Third, consolidation in long-term memory is
greatly enhanced by spaced repetitions, where
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material is actively recalled at a later date (21).
This is not feasible in stand-alone sessions.

To improve the pedagogical design, we
adapted our existing teaching of practical
PyMOL skills to second-year biochemistry stu-
dents from a single session to a semester-long
learning path (Fig 1). The learning path
progresses from basic to advanced competen-
ces in structural analysis and introduces many
tools currently used in research. In our experi-
ence, many students resist moving beyond the
GUI, which prevents them from using advanced
tools as well as automating repeated tasks
using procedural scripts. For these reasons, we
aimed to familiarize the students with the
command line early on. We think PyMOL offers
an excellent opportunity for teaching scripting
to biology-focused science students; these are
broadly applicable skills in the molecular
biosciences and bioinformatics. Furthermore,
we aim to support the development of a
‘‘computational thinking’’ mind-set. Computa-
tional thinking involves analyzing a problem
and expressing its solution in machine-execut-
able form, typically in the form of an algorithm

that breaks the process down into simple
sequential steps. Computational thinking is
thus a skill set that transcends any specific
scripting language. While the importance of
scripting may be apparent to the instructors, it
is not necessarily apparent for an undergradu-
ate specializing in biology. A key pedagogical
challenge is thus to design exercises where the
students quickly become able to solve prob-
lems that are meaningful to them. A PyMOL
script comprising a few lines of code can
deliver stunning visualizations and allow the
students to experience early successes. We thus
think PyMOL offers a great opportunity for
introducing the students to a computational
mind-set that is transferable to other scientific
contexts.

B. Teaching materials
The complete learning path consists of

problem sets within 19 topics, each containing
between 1 and 6 exercises, resulting in 53
exercises in total. Additionally, there are 6
instructional videos and a test used to evaluate
the students’ PyMOL acquired competences.

Fig 1. Overview of the PyMOL learning path. The learning path consists of 19 problem sets and 6 instructional videos organized to span a
semester course in structural biochemistry. The course aims to progressively build PyMOL programming skills where functions are introduced
in relevant scientific context. Red text indicates functions taught using the GUI, whereas black indicates functions taught using the
command line. Courier font indicates commands used. The video icon indicates instructional videos paired to exercises.
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Figure 1 provides an overview of the teaching
materials, including when new tools are intro-
duced. The materials were originally in Danish
but have been made available in English as a
course pack via Figshare (https://figshare.com/
s/0a55edec9b8e441b2813) or as supplementa-
ry information. The videos support different
learning styles and illustrate concepts that are
difficult to describe in writing, such as the use
of the GUI. A set of advanced videos illustrates
how to use scripts and implement custom-
designed functions using the application pro-
gramming interface and are deliberately kept
below 10 minutes.

The 53 exercises that require PyMOL make
up the core of the learning path. They cover a
wide range of relevant biological topics and
mechanisms and will fit into most introductory
courses in biomolecular structure and function.
The course starts by introducing the basic
structure of proteins and nucleic acids, then
progresses through important classes of bio-
molecules, such as enzymes, pumps, and
channels. Additionally, the course deals with
important regulatory concepts, such as post-
translational modifications, trafficking, and
structural dynamics, as well as essential struc-
tural techniques, including X-ray crystallogra-
phy, cryogenic electron microscopy, nuclear
magnetic resonance spectroscopy, and fluores-
cence. The students are also assigned reading
materials describing the theoretical back-
ground of the topic, typically a chapter in a
textbook, and solve other problems that do not
require PyMOL. If this is material that is already
covered, our materials could be used as a
stand-alone PyMOL learning path. The materi-
als are organized to follow the progression of
scientific topics (Fig 1), and each topic is thus
accompanied by between 1 and 6 exercises
containing up to 13 questions. Questions get
progressively more difficult within an exercise,
which allows students at different academic
levels to contribute.

PyMOL functions are introduced in a pro-
gressive manner such that the program is
initially controlled through the GUI, after which
the students are gradually encouraged to
switch to the command line and subsequently

scripts. Initially, the course focuses on visuali-
zation, followed by analysis, and finally touches
on manipulation of structures during model
building. Beyond the first sessions, only a few
new tools are introduced in each session as
relevant to the scientific context. For example,
the structural alignment tool is introduced in
the session on protein evolution. Key functions
are repeatedly used throughout the learning
path to reinforce long-term memory in stu-
dents. New tools are explained in a short
paragraph immediately before they are need-
ed. Many of the exercises also include premade
PyMOL scripts that demonstrate the power of
scripting and allow the students to learn by
example through the copying of relevant
sections of the code. The students are also
directed to use Internet resources, such as the
RCSB Protein Databank (https://www.rcsb.org),
the Protein Structure Classification Database,
CATH (https://www.cathdb.info), UniProt
(https://www.uniprot.org), and ProtParam
(https://www.expasy.org/resources/protparam),
and are instructed to find further guidance on
PyMOL usage on PyMOLwiki (https://
pymolwiki.org).

II. Results
A. Educational setting

The PyMOL learning path was designed for a
course on biomolecular structure and function,
which is a mandatory part of the third semester
of the BS programs in molecular biology,
molecular medicine, and medicinal chemistry
at Aarhus University, Aarhus, Denmark. Overall,
the course consists of lectures, classroom
teaching, online learning tasks, and an exper-
imental lab exercise. The course uses mainly the
textbook Biochemistry by Berg et al. (22),
supplemented with material from other sourc-
es. The learning path was implemented as part
of 2-hour classroom sessions conducted twice a
week, meeting in groups of 20–30 students led
by a teaching assistant. The students were
asked to attempt to solve the problem sets
before arriving in class but were instructed that
the difficulty was such that they were not
expected to be able to finish all the problems
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themselves. In the classroom, each exercise was
assigned to a group of 3 or 4 students who
were given half an hour to prepare, aided by
the teaching assistant, before presenting their
solution to the rest of the class. This format
allows for peer-to-peer learning while the
instructor circulates to help groups that are
stuck. The supervised preparation in small
groups also serves to buttress struggling or
insecure students by allowing them to whet
their answers in a safe setting before present-
ing to the whole class. As a principle, all
students must present part of a solved problem
in every session. The instructor listens to the
presentations and corrects errors or misunder-
standings. Typically, each session would con-
tain 1 exercise from the PyMOL learning path,
while the remaining exercises focus on other
aspects of the scientific topic that do not
require structural analysis.

B. Evaluation of the students’
perception

In the end-of-course survey, the students
were asked 3 questions about the PyMOL
learning path; 115 students returned the
questionnaire out of 146 students participating
in the final exam. Some students register for
the course without attending classes or taking
the exam. We think the number of students
taking the final exam is the best proxy for the
active student population and thus use these
to calculate response rates. In principle, it is
possible that some students filled the survey
without taking the exam. However, we think
this is unlikely to change the results by much.
Our questionnaire thus had an estimated
response rate of 79% for active students. The
high response rate suggests that we capture
opinions of a representative cross section of the
students. First, the students were asked to
assess how much time they had spent prepar-
ing for the PyMOL learning path per week (Fig
2A). The results show that students typically
spent 2–4 hours per week on the learning path,
which translates into 1–2 hours per exercise
and suggests that most students made a
serious attempt to solve the exercises. A small
fraction of students report spending more than

8 hours per week on the PyMOL problems,
which would be excessive. We think that this is
misreporting the total preparation time spent
on the course rather than just the PyMOL
exercises. Nevertheless, in future iterations of
the course, it might be useful to instruct the
students not to get bogged down by single
exercises.

Next, the students were asked to rate the
degree to which the PyMOL learning path
supported their ability to perform structural
analysis (Fig 2B). Fifty percent of the students
responded ‘‘very large’’ or ‘‘large,’’ with most
other students replying ‘‘some.’’ Overall, most
of the students felt that the exercises helped
them analyze biomolecular structures, which
was the central aim of the learning path. Finally,
the students were asked to rate the degree to
which the progression and the difficulty of the
learning path were appropriate (Fig 2C). Thirty-
three percent responded ‘‘very large’’ or
‘‘large,’’ whereas most responded ‘‘some.’’ This
question did not distinguish between students
who thought it was too easy or too hard.
However, the questionnaire also allowed free
text comments where several students indicat-
ed that they found the exercises too difficult or
too time consuming. None stated that the
exercises were too easy. In summary, this
suggests that exercises were challenging but
not to an extent that led the students to give
up. The student-reported learning outcomes
should be taken with a grain of salt, as the
increased effort required for active learning
makes students prefer passive approaches and
to overestimate the learning outcomes of these
relative to active approaches (15).

C. Evaluation of learning outcomes
We also asked the students to participate in

an invigilated test that would evaluate their
practical PyMOL skills after completing the
course. Out of the 146 students who took the
final exam, 123 students participated in this
test, and again the high participation rate
(84%) suggests that we tested a representative
sample. The students were asked to solve 8
tasks individually within 45 minutes and
provide their answers as a PyMOL script (Fig
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3). This test format requires that the students
produce an operational script and thus directly
tests their computational skills and mind-set.
During the test, the students had access to
written resources and the Internet but were not
allowed to communicate with one another. This
format allows students to look up command
syntax, but with an average of less than 6
minutes per question, there was little chance to
learn to solve problems from scratch. The
questions prompt the students to analyze 2
different crystal structures of the amino acid
transporter LeuT (23, 24). As a starting point,
the students were given a script that would
load the required PDB files and create 8 empty
scenes, 1 for each of the answers. The questions
follow the progression of the learning path and
were meant to become increasingly difficult
(Fig 3A). The first 3 questions requested
illustration of structural features such as the
fold of the protein (Q1), nonprotein compo-
nents (Q2), and selected residues (Q3). The next
3 questions requested common structural
analyses, such as measuring the shortest
distance between 2 residues (Q4), highlighting
residues within 6 Å from some metal ions (Q5),
and a structural alignment of 2 structures (Q6).
The final 2 questions requested information to
be mapped onto the structures via a color

gradient, such as the B-factor of the crystal
structure (Q7) and vacuum electrostatics (Q8).
The answers were evaluated based on visual
inspection of the resulting 8 scenes generated
by the submitted scripts, and in cases of doubt,
the raw scripts were inspected. Minor devia-
tions from perfection, such as reversed color
gradients or scripts that were nonfunctional
due to wrong file extensions or omission of
elements from the provided template, were
tolerated.

The results show that practically all students
(98%) manage to visualize the fold of the
proteins and highlight nonprotein components
after having completed the learning path. A
large majority (86%) was also able to highlight
specific residues. The test was conducted about
3 months after these functions were introduced
in the course, which suggests that the students
remember how to use of basic functions under
realistic working conditions due to regular
repetition. Furthermore, this shows that almost
all students have a basic understanding of
procedural scripting as implemented in PyMOL.
The success rate dropped to 76% in Q4, which
asked the students to measure the distance
between 2 specific atoms. The syntax for this
selection is more complex, as it involves both a
residue number and a specific atom. The lowest

Fig 2. Survey of the students’ perception of own learning. The students’ experience of their own learning gain was evaluated as part of the
overall course evaluation using an anonymous survey conducted via the LMS used for the course (Brightspace). The students were asked
how much time they had spent on average preparing the PyMOL exercises (A) per week, which typically concerned 1 or 2 problem sets.
Subsequently, the students were asked to assess to which extent the PyMOL learning path supported their ability to perform structural
analysis (B) and to which extent the difficulty and progression was appropriate (C). The questionnaire was returned by 115 out of 146
students who took the final exam (79%).
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success rate (68%) was found for Q5, which
asked the student to select and highlight
residues within a custom distance of 6 Å. In
the analysis section, 90% managed to perform
a full-length structural alignment of 2 different
structures. The last 2 questions requested
structural properties to be displayed as color
gradients (Q7: B factor visualized on the protein
backbone; Q8: vacuum electrostatics plotted on
a surface); this was managed by 74% and 73%

of the students, respectively. In total, 44% of
students answered all questions correctly, and
80% had at least 6 correct answers, suggesting
that they managed to solve at least 1 advanced
task. As many students solved all tasks, we may
underestimate the level of the most accom-
plished students’ learning. Anecdotally, we
noticed that some of the students were highly
motivated by the PyMOL scripting and moved
beyond curriculum using online resources.

Fig 3. Evaluation of the students’ PyMOL competences. The students were asked to complete 8 assignments (A) individually within 45
minutes using PyMOL and submit the answer as a PyMOL script. The questions test the students’ ability to create customized displays of
molecular features, perform basic structural analysis, and map specific information onto a structure. An example of a correct answer is
shown in each panel. The answers were intended to become progressively harder. The answers were scored based on whether the students
accomplished the main task, and minor flaws were tolerated. (B) shows the fraction of correct answers for each question, and (C) shows the
distribution of correct answers per student. The test was taken by 123 out of 146 students who took the final exam (84%).
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III. Discussion
Computer-based structural analysis is a key

practical skill in modern biochemistry. The lack
of requirements for specialized equipment
makes computer-based analysis an attractive
platform for active learning approaches in large
classes. Here, we have redesigned our teaching
of the molecular graphics software PyMOL to a
semester-long learning path to integrate prac-
tical skills into relevant scientific contents. By
distributing the exercises throughout the se-
mester, it was possible to divide the learning
into manageable chunks and introduce spaced
repetition. We covered many more functions
than in previous years, so our quantitative
evaluation cannot be immediately compared to
a control group. Our evaluation indicates that
after completing the course, most students
mastered many advanced functions, including
analysis functions typically used in functional
interpretation in research labs. The gradual
learning path thus likely allowed the students
to achieve a higher level of proficiency than
was possible in a single-session format.

A semester-long PyMOL path requires a great
deal of time and may therefore be more
difficult to incorporate in all educational
settings. However, as the teaching of the
computer analysis is tightly integrated with
the learning goals of the overall course, it may
not require much more instructional time but
rather a change in the nature of the teaching
activities to emphasize student active learning
and allow independent exploration of structur-
al biology. While the sessions form part of a
learning path, they can also work as indepen-
dent modules. As specialized functions are
introduced when they are needed, it is to some
extent possible to excise individual exercises to
adapt the path to a different curriculum. We
thus share the materials of the learning path as
supplementary material in the hope that they
will be useful to others.

Students enter the course with a wide range
skills and attitudes to computers. From the
onset, some students already know how to
code and may even be more computer savvy
than the instructors. Others are only superfi-
cially familiar with computing and may have

previous negative experiences with coding. The
preexisting skills of the students thus vary more
than usual in molecular biosciences, which
could explain the wide range of different
reported preparation times (Fig 2A) and per-
ception of the difficulty (Fig 2C). This poses a
challenge for course design: How do you
motivate advanced students without losing
the students who struggle? We thus think it is
important to teach the use of the GUI in parallel
to scripting. The GUI lowers the barrier for
accessing basic tools but does not allow for all
advanced functions. Furthermore, a self-paced
learning path supports struggling students
with gradual progression and manageable
information chunks while allowing more expe-
rienced students to skim basic exercises before
independently moving beyond the confines of
the course. The course also serves as an
intuitive way of introducing computational
thinking in undergraduate classes. Practically
all students managed to produce a PyMOL
script and thus have at least a rudimentary
understanding of procedural scripting. The
learning path thus serves as a primer to
scripting that is used broadly in the molecular
biosciences in, for example, automation and
data analysis as well as bioinformatics.

SUPPLEMENTAL MATERIAL
Course pack and videos are available at: https://doi.org/10.

35459/tbp.2022.000219.S1.
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