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ABSTRACT Since the Force Concept Inventory in 1992, many concept inventories
have been developed to cover classical scientific fields. However, there is a lack
of concept inventories for interdisciplinary fields, such as biophysics. We introduce a
Biophysics Concept Inventory Survey (BCIS), a 20-question, multiple-choice survey to
measure student gains in biophysical concepts. The BCIS contains 5 question classifi-
cations: remember, understand, apply, analyze, and create, as well as question concepts
divided into primarily physics or primarily biology questions. We administered the BCIS
to 3 cohorts of students over 4 years. Each cohort participated in a 10-week summer
Research Experience for Undergraduates (REU) in biophysics. We compared the
presurvey (before REU) and postsurvey (after REU) scores to determine the fraction of
the maximum possible gain or loss realized. Our analysis of the results suggests that
the BCIS shows no biases based on sex or ethnicity. Further, we used the BCIS to
show that 69% of the REU participants showed gains in biophysics concepts, with
most of the total participant mean of gain occurring at higher levels of Bloom’s taxon-
omy: create and analyze. Overall, participants obtain slightly higher scores in
physics (8% increase) than biology (5% increase) when comparing the pre- and
postscores. The coronavirus disease 2019 pandemic allows a splitting of prepandemic
and postpandemic cohorts, with the postpandemic cohort showing significantly larger
gains than the prepandemic students. These results show that the BCIS, with question
classifications and concepts, probes the students’ ability to apply knowledge to various
biophysical science topics without underlying biases and enables instructors to obtain
answers to important questions about the effectiveness of the educational programs.
The BCIS fills a gap for interdisciplinary concept inventories.

KEY WORDS concept inventory; biophysics education, survey; testing metrics;
gains; effect size; Bloom taxonomy; experiential learning; research-driven learning

I. INTRODUCTION
Concept inventories exist for traditional fields in science (1–3), technol-

ogy (4, 5), engineering (6, 7), and mathematics (8, 9), but there remains a
gap for interdisciplinary fields such as biophysics. Concept inventories
arise from the need to have metrics to determine the depth of common
student misunderstandings in sciences. Multiple-choice questions allow
instructors a quick, easy-to-grade method of probing classes for complex
topics. Several studies have already shown the benefits and logic of concept
inventories (10) and how they can be best applied (11–14).
We developed a Biophysics Concept Inventory Survey (BCIS) to probe

student learning across disciplines by generating 20 multiple-choice
questions, which take an interdisciplinary approach to physics and biology.
The BCIS contains 5 question classifications based on Bloom’s taxonomy:
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remember, understand, apply, analyze, and create
(13, 14). The question classification allows the prob-
ing of students’ ability to apply biophysical con-
cepts to various problems. Moreover, we classified
the questions as either prominently probing phys-
ical or biological concepts. Results inform instruc-
tors in which concepts students struggle the
most. We tested the BCIS for underlying biases
by using gathered demographic information, includ-
ing sex and ethnicity of the Research Experience
for Undergraduates (REU) participants.

II. SCIENTIFIC AND PEDAGOGIC
BACKGROUND
Students have many incorrect ideas and mis-

conceptions regarding science (15–17). Written
exams and student interviews help determine
these misconceptions, but they are long and take
time to perform and analyze. In 1985, Halloun
and Hestenes developed a multiple-choice con-
cept inventory regarding the physics of motion to
quickly determine student misconceptions (18).
Questions for this survey were multiple-choice,
with 1 correct answer and several incorrect answers
designed to distract. These distractor answers were
designed from common misconceptions based
on common student answers in written essays
and student interviews (19). Shortly after the
motion concept inventory, the Force Concept
Inventory was developed (20). The Force Con-
cept Inventory showed that students could recite
Newton’s third law but not apply it correctly.
These early concept inventories led to an overturn
of science education (10, 12).
Since the first release of concept inventories,

particularly the Force Concept Inventory, there
have been several studies showing the benefits
and logic of concept inventories and how they
can be best applied (11, 20–22). Multiple-choice
questions allow administrators a quick, easy-to-
grade means of probing student learning in
complex topics. Concept inventories serve as
a valuable tool for assessing the level of student
comprehension and misconceptions in the field
of sciences (17, 23, 24).
Administrating concept inventories several

times throughout a course allows instructors to

determine student education progress during
instruction. Typically, this change involves students
doing better on the concept inventory after instruc-
tion showing an increase in score. The change in
score gives a measure of how much information
students gain after instruction. Often gain is the
metric used to determine student advancement
in a course. Although there are ongoing discussions
regarding the best way to calculate gain (25, 26),
gain is typically on a scale between 0 and 1, with
a traditional, semester-long lecture course giving
an average gain of �0.25 (12).
The work of Halloun and Hestenes helped guide

the creation of future concept inventories, giving
way to numerous concept inventories in multi-
ple disciplines, including physics (20, 21, 27, 28),
chemistry (29, 30), and biology (1, 2, 31–34). How-
ever, these concept inventories are very specific,
often covering a single topic within a single disci-
pline such as kinematics (27) or electrostatics (28)
from physics and natural selection (2) from biology.
There are several concept inventories for traditional
fields, but there remains a lack of tools for measur-
ing student learning and understanding in interdis-
ciplinary fields, such as biophysics. We developed
a BCIS to address this need.
We developed the BCIS to assess student

understanding across disciplines by generating
20 multiple-choice questions that take an inter-
disciplinary approach to physics and biology.
We wrote questions to be classified as primarily
physics-based or primarily biology-based topics
to inform instructors about topics that cause
students to struggle. Physics questions are typical
physics concepts, including diffusion, kinetics,
force and energy, density, pressure, mechan-
ics, electrostatics, and optics, applied to a bio-
logical system, such as switching a walking
person in a kinetics question to a cargo vesicle
moving along a microtubule. Biology questions
put core biological concepts in the front, includ-
ing molecular biology, genetics, and biochemis-
try, with less emphasis on the physical properties
of biomolecules. As guidance, we modified some
questions from previously existing concept inven-
tories. For example, 1 question comes from the
Force Concept Inventory (20), where the original
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question involved the forces between charged
spheres. Our modified version creates the situation
as proteins are embedded in a cellular membrane.
Biology-based questions came from general biol-
ogy concepts being more definition based and
mechanism driven.
The additional design of the BCIS included con-

sidering Bloom’s taxonomy of human cognition.
We group each BCIS question into 1 of 5 classifi-
cations: remember, understand, apply, analyze,
and create (13). These classifications enable instruc-
tors to probe the student’s ability to apply bio-
physical concepts at various cognition levels. It
is not enough to repeat previous facts, but stu-
dents should be able to use knowledge to fur-
ther research and assist with troubleshooting.
We want students to form problem solving and
logic skills. Addressing the questionnaire as a sur-
vey helps students answer honestly and address
test anxiety (35, 36).
We calculated each participant’s gain or loss of

knowledge and then averaged the gains and losses
together for an average of gains. We tested the
BCIS for biases against sex and ethnicity. There
were no significant differences between sex and
ethnicity. Our study was interrupted by the corona-
virus disease 2019 (COVID-19) pandemic. This
interruption allowed us a unique opportunity to
demonstrate how the BCIS distinguished between
pre- and postpandemic cohorts. Our results, for
the pilot REU group, imply that the BCIS can be
used to determine the change in student under-
standing and application over time by using
multiple-choice questions for quick and easy grad-
ing. Thus, the BCIS fulfills a need for interdisciplin-
ary evaluations across biophysics courses. This
work, classified as exempt under Category 2 in
accordance with the Code of Federal Regulations
(CFR) 45 CFR 46.104(d) (37), was carried out in accor-
dance with the standards established by the Clem-
son University Institutional Review Board (2018270).

III. METHODS AND STATISTICAL TESTS

A. The BCIS
The BCIS consists of 20 multiple-choice questions

with a single correct answer. Example questions

can be seen in the Supplemental Material. We
used the Force Concept Inventory (20) as an
example. For questions classified as primarily
physics, we used applications of physics con-
cepts to biological systems. For example, instead
of a charged particle, we used a charged DNA.
Simple explanations were changed to have a
biological context. For questions classified as
primarily biology, we asked semiquantitative
questions focused on molecular biology, genet-
ics, and biochemistry.
Instructor access to the BCIS can be requested

by filling out a Google form with proof of the
instructors’ role (38).

B. The REU sample group
As a pilot test, we administered the BCIS to

32 students from 3 cohorts of undergraduate
researchers who participated in the Clemson
University REU site (“Nature’s Machinery through
the Prism of Physics, Biology, Chemistry and Engi-
neering”) funded by the National Science Foun-
dation. The REU committee, consisting of the
primary investigators of the REU site, and a fac-
ulty mentor screened the applications to satisfy
the programmatic goals of equal participation
from participants with backgrounds in the bio-
logical and the physical sciences. For each cohort,
the REU committee balanced participation from
those of underrepresented minority (URM) sta-
tus, on the basis of sex, and from nonresearch-
intensive institutions. Final assignment to the
project was equally weighted by the participant’s
interest and a final interview with the potential
mentor. Recruitment was nationally, but with
emphasis from the southeast. The participants
came from 17 states, from private and public
institutions of higher education, ranging
from primarily undergraduate institutions to
doctoral universities with very high research
activity according to the Carnegie Classifica-
tion (39). As part of the application, we gathered
demographic information on the participants,
such as sex and ethnicity.
The first week of the REU program, under-

graduate researchers participated in a “Biophysics
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Bootcamp.” During bootcamp, participants partic-
ipated in approximately 13 h of traditional lec-
tures and 17 h of laboratory work, including
introduction to research lectures. Participants
spent this first bootcamp week becoming familiar
with Clemson University’s campus, socializing
with each other, and learning essential research
and basic laboratory skills, such as how to keep
a laboratory notebook and research safety, among
other required introductions before entering a lab-
oratory setting. In addition, each cohort received
training in basic experimental and computational
tools following a designed theme. For example, in
2021, participants determined the size of green
fluorescent protein by various means, including
fluorescent correlation spectroscopy, size exclusion
chromatography, computational simulations using
Visual Molecular Dynamics (40), and quantitative
analysis of sodium dodecyl sulfate–polyacrylamide
gel electrophoresis gels. After the bootcamp,
participants wrote a report formatted as a bio-
physical journal article. This training helped
participants understand experimental valida-
tion through many means and determine the
differences (pros and cons) of different experi-
mental designs.
For the remaining 9 weeks of the REU program,

participants worked on collaborative, interdisci-
plinary research projects in pairs, but with indi-
vidual and unique project objectives, where 1
undergraduate researcher had an experimental
focus, while the other had a computational
aspect of the same problem; or 1 undergrad-
uate researcher was in a physics laboratory,
and the other was doing the more biological
aspects of the project. This approach allowed
participants to build collaboration skills, while
gaining exposure to both experimental and com-
putational approaches to research.
To supplement the experience and aid in build-

ing professional development skills (41, 42), REU
participants had weekly meetings with cohorts
where they presented research updates, includ-
ing project design, background, and scientific
importance. Participants also met weekly for
a journal club and took turns presenting recently

published research articles relating to the project
to encourage staying up-to-date on relevant
research for the topic and practicing critical
reading of the literature. There were also
weekly professional seminars given by experts
at the university covering topics such as scien-
tific writing, networking, and conflict resolution.
At the end of the summer, undergraduate
researchers participated in Clemson University’s
undergraduate research symposium.
The goals of the REU were to (a) encourage

and enable participants to pursue interdisciplin-
ary research careers, (b) provide participants with
important and feasible projects done and men-
tored collaboratively by biological and physical
scientists, (c) train participants to communicate
science clearly, and (d) provide career develop-
ment advice, research skills, and mentorship. As
such, REU participants did not have any tradi-
tional classroom instruction regarding the topics
covered by the BCIS, and participants were not
quizzed or given traditional homework, such as
problem sets. The BCIS was developed separately
from the REU curriculum. Participants drove
learning by finding and reading scientific liter-
ature, asking questions of those around them,
and problem solving research projects. Thus,
this sampling is biased toward undergraduate
researchers who participated in an interactive,
experiential learning approach (22, 43), instead of
students who participated in a traditional, semes-
ter-long lecture course.

C. Administration of the survey
Participants took the BCIS upon arrival (pre-

survey) to the REU site and upon departure
(postsurvey). The question order remained the
same for the presurvey and postsurvey to
ensure the order of the question played no
part in answer changes between pre- and
postsurveys. Access to the survey required a
password and Respondus LockDown Browser
(Version 1.0.5; Redmond, WA) to ensure the
survey was given to all participants simulta-
neously with no outside resources. Participants
had 35 min to answer the 20 questions.

Biophysics Concept Inventory Survey
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D. Matched data
We used matched data (44) for all analyses,

allowing the consideration of participant demo-
graphics. Therefore, participant data calculations
are completed for each individual and then pooled
via demographics to form statistical groups.

E. Fraction of maximum possible
gain realized
For each participant, we calculated the pre- and

postscores from the pre- and postsurvey, respec-
tively. Each question was weighted the same with
typical grading procedures to determine the score;
the number of correctly answered questions was
divided by the total number of questions to give a
percentage answered correctly.
Also, Eq. 1 shows how we compared the pre-

and postscores for each participant to obtain a
gain, no change, loss (GNL) value. We calculated
the fraction of the maximum possible gain real-
ized (gain; 12) for participants who scored higher
on the postsurvey than the presurvey. For partici-
pants who scored lower on the postsurvey than
the presurvey, we calculated the maximum possi-
ble loss forfeited (loss). Although the concept of
loss has been deliberated before (25, 26), our
loss calculation method is normalized regarding
the percentage of questions answered incor-
rectly compared with what was initially known.
The participant is assigned 0 when the pre- and
postscores are identical, signaling no change.
There were no participants who obtained a per-
fect score (100%) on the pre- or postsurvey.
Therefore, the GNLs are calculated as follows:

postscore > prescore:

gain ¼ postscore� prescore

100%� prescore

no change ¼ 0;postscore ¼ prescore

postscore,prescore:

loss ¼ postscore� prescore

prescore
(1)

With a mean of GNL (gain, G; no change, N;
loss, L) that is the weighted average of the 3
possible scores as
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The mean GNL method creates a scale from
�1 (total loss) to 1 (total gain), where negative
numbers represent loss and positive numbers
represent gain. This method assists in averaging
statistics and further data analysis.

F. The P values and effect size
Participants were deidentified and grouped into

different demographic groups: sex, URM status,
and college major, as were self-reported by the
participants. We calculated and considered
the Cohen effect size (d; Eq. 3; 45–47) to com-
pare between groups. The effect size shows the
size of the shift between the pre- and post-
scores. We opted for the Cohen effect size
because it provides a good measure for smaller
sampling sizes, and we have a total sample size
of 32. The effect size is calculated by Eq. 3, where
pooledSTD is the pooled standard deviation of
all the pre- and postsurvey scores.

effect size ¼ d ¼ hpostscorei � hprescorei
pooledSTD

(3)

where the brackets h i represent the mean. In this
manner, an effect size of 0.2 is a small shift, 0.5 is a
medium shift, and 0.8 is a large shift (45, 48).
Further, each demographic grouping was com-

pared by using Student t test. For each t test, we
used normal quantile–quantile plots to ensure
the sampling data distribution was close to nor-
mal. With such a small sampling size, a P value
may not be efficient for determining the differ-
ences between subgroups (49), but a combina-
tion of P values and effect size allows a complete
comparison between various subgroups for this
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study (50). We considered P < 0.10 to be statisti-
cally significant.

G. Question subject percentages
To determine the effect size regarding sub-

ject matter, questions of similar subjects were
grouped together. The total mean and stan-
dard deviation for the pre- and postresponses
were determined for each group. This allowed
the pooled standard deviation and effect size
for each grouping to be determined.

IV. RESULTS AND DISCUSSION

A. The BCIS shows medium gains
from REU participants
Overall, the average BCIS scores increased by

7% from the prescore (49.4% 6 14.2%) to the
postscore (56.4% 6 13.1%). With a prescore of
50% (the mean prescore is not statistically different
from 50%, P ¼ 0.8), the BCIS is easy enough for
undergraduate students to feel confident, while
leaving enough room for students to achieve gain.
We found that the 32 REU participants had a

mean GNL of 0.136 0.18 and an effect size of 0.51
with 3 groups: gain with 22 participants, loss with
6 participants, and no change with 4 participants
(Fig 1). Gain participants have a large effect size of
0.98, with a mean of gains 0.23 6 0.11 (n ¼ 22).
Loss participants have a medium effect size of
�0.40, with a mean of loss �0.156 0.07 (n ¼ 6).
The increase in gain and effect size may be attri-

buted to interactive experimental learning and
may not reflect a traditional lecture course (51, 52).
Many previous studies discard the students with
losses (53). Here, we decided to divide the gains
and losses but show both groups (26). The 69% of
participants benefited from the REU, as assessed
by the BCIS with overall positive gains.

B. The BCIS can identify students’
weak and strong subjects
We analyzed the BCIS results by question

subject. Although the questions are interdisciplin-
ary, we classified each question as a principal biol-
ogy subject (6 questions) or a physics subject

(14 questions). Further, the questions address
specific topics, including kinetics, mechanics,
force and energy, electrostatics, density, pressure,
diffusion, and optics for physics and molecular
biology, genetics, and biochemistry for biology.
We compared the pre- and postsurvey responses
for each student to identify the topics that indi-
vidual participants either better understand or
continue to struggle with after instruction (Fig 2).
We found that the participants came in to the

REU program already understanding biology sub-
jects better than physics subjects, with 69% of
answers correct for biology subject questions on
the presurvey compared with only 41% for physics
subjects. Participants had a slightly larger effect
size for physics (d ¼ 0.16) compared with biology
(d ¼ 0.12), but both show small shifts. A closer
look showed participants shifted more on certain
subjects than others. Within the physics group of
questions, we found participants showed larger
shifts in introductory physics concepts, such as
density (d ¼ 0.58), force and energy (d ¼ 0.45),
and kinetics (d ¼ 0.31), with small negative shifts,
denoting losses, in more advanced physics con-
cepts, such as electrostatics (d ¼ �0.11), and
pressure (d ¼ �0.03). The small losses may be
attributed to guessing, due to the nature of

68.8%18.8%
12.5%

dloss = –0.40 dgain = 0.98
Loss

Gain
No Change

Gain and Loss Distribution

0.40.20.10.0– 0.3 – 0.1– 0.2
Loss Gain

0.3 0.5

Fig 1. Overall gains and losses. The distribution of the 32 REU
students’ gain or loss values shown in the horizontal violin
chart, where each point represents a student’s GNL score (green
represents gain, gray represents no change, and red represents
loss). The percentage and effect size (d) for each group can be
found above the respective group. The horizontal bar chart
below each group shows the mean with error bars, representing
the standard deviation for gain and loss groups.
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multiple-choice testing (54). We observe
smaller changes regarding biology subjects.
Biochemistry (d ¼ 0.27) showed the largest
total change, with molecular biology (d ¼ �0.05)
showing a slight negative shift.

C. The BCIS uses question
classifications to assess
participants’ understanding
Typical assessments only tend to probe student

knowledge, the ability to repeat information previ-
ously given. It is crucial to ensure that students
can apply this knowledge. Thus, we designed the
BCIS with questions across multiple levels of
Bloom’s taxonomy of educational objectives
(13, 14; Table 1).
We found that the REU students showed nearly

0 mean of GNL at the lower levels of Bloom’s tax-
onomy: remember (0.06 6 0.37); understand
(0.06 6 0.45); and apply (0.05 6 0.43). However,
we found considerable gains in create (0.22 6
0.39) and analyze (0.23 6 0.50; Fig 3). We attribute
these results to the active learning approach of the
REU. The experience increased the participant’s
ability to apply knowledge, particularly regarding

creating new connections (create) and understand-
ing how system parts fit together (analyze). How-
ever, without required reading, traditional
problem sets, or classroom-based lectures, par-
ticipant baseline remember showed no gain.

D. This BCIS is nonbiased for sex
and URM status but shows a
preference for college major
We pooled all REU cohorts by demographic

information to test the BCIS for biases (55, 56).

30

20

10

0

10

30

20
Kinetics
d = 0.31

Mechanics
d = 0.00

Force/Energy
d = 0.45 Optics

d = 0.10

Density
d = 0.58

Pressure
d = -0.03 Electrostatics

d = -0.11

Molecular
Biology
d = -0.05 Genetics

d = 0.15

Diffusion
d = 0.31 Biochemistry

d = 0.27

Physics Subjects Biology Subjects

Unchanged Correct LossGain Unchanged Incorrect

Nu
m

be
r o

f S
tu

de
nt

s

BCIS Student’s Response to Subject Matter

Subject Type

Fig 2. The BCIS contains various question categories that probe a breadth of physics and biology subjects. Bar graphs represent student
gain or loss for each question, with labels indicating the main subject the question is covering. Students in dark green are marked as
gain, answering correctly only on the postsurvey. Students in light green are marked as unchanged correct, answering correctly on the
pre- and postsurvey. Students in light red are marked as unchanged incorrect, answering incorrectly on both the pre- and postsurveys.
Students in dark red are marked as loss, answering correctly on the presurvey but incorrectly on the postsurvey.

Table 1. Bloom’s taxonomy: BCIS question classification details.

Classification
Number of
questions

Description of question
classification

Remember 7 Recognizing and recalling information

Understand 3 Interpreting, explaining, summarizing

Apply 3 Applying rules, methods, or principles to
new situations

Analyze 3 Classifying and understanding compo-
nents parts within a system

Create 4 Creating new connections and combin-
ing ideas

Evaluate 0 Addressing controversies, forming
opinions
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We found no statistically significant differences
in gain or loss corresponding to the participants’
sex (2-tailed t test, P ¼ 0.90) or URM status
(2-tailed t test, P ¼ 0.62). The effect size for sex
was 0.41 for males and 0.61 for females, indicat-
ing that both groups showed medium gains
from the REU (Fig 4A). The effect size for URM
status was 0.67 for URM participants and 0.45
for non-URM participants, indicating that both

groups also showed medium gains from the REU
(Fig 4B). Also, these data support the conclusion
that the BCIS is not inherently biased based on
gender or ethnicity.
Further, we pooled the participants into respec-

tive college majors: physical sciences (for partici-
pants majoring in physical sciences or engineering)
or biological sciences (for participants majoring in
any of the life sciences). Approximately two-thirds

RememberApply UnderstandAnalyzeCreate

Gain By Question Classification

Loss

Gain
1.0

0.5

0

 -0.5

 -1.0

d = 0.63 d = 0.50 d = 0.13 d = - 0.03 d = - 0.05

Fig 3. The BCIS contains
various question catego-
ries that probe different
levels of understanding.
Violin plots show student
gain for each question
category. Each black dot
represents a student. The
box and whisker plots
inside the violin plots
show the quartiles, with
the white dot represent-
ing the median GNL.
Effect size (d) is shown
below the plots.

URM
non-URM

56.2%

43.8%

B

p-value = 0.62

URM Status

-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3
0.4

non-URM

URM

Gain

Loss

n=9

n=3

n=3

n=13

d=0.67
d=0.45

59.4%

40.6%

A

Male
Female

p-value = 0.90

Sex

Loss

Gain

-0.3
-0.2
-0.1

0.0
0.1
0.2
0.3
0.4

Male
Female

n=3 n=3

n=14
n=8

d=0.41d=0.61

Biological
Sciences

n=16

n=2

Physical
Sciences

n=6

n=4

0.4

0.1
0.2
0.3

0.0
-0.1

-0.4
-0.3
-0.2Loss

Gain

d=0.29d=0.71

Checking BCIS for Bias

62.5%

37.5%

Physical Sciences
Biological Sciences

C

p-value = 0.45

Major

Fig 4. The BCIS shows no
bias for sex or URM. Pie
charts show the distribution
of student demographics
based on (A) sex, (B) URM
status, and (C) college major.
Bar charts show the mean of
the gain (positive) and loss
(negative), with the error
bars denoting the standard
deviation for each distribu-
tion. The effect size (d) is
shown below for each demo-
graphic. Sample size for each
group is denoted by “n ¼”
near the error bar for that
group. The 4 students with
no change are not shown in
the bar charts.
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of participants had a biological sciences under-
graduate major (Fig 4C). We found no statistically
significant differences in gain or loss correspond-
ing to the participant’s major (2-tailed t test,
P ¼ 0.45).
However, the effect size is 0.71 for biological

sciences, showing large growth, while physical
sciences have an effect size of only 0.29, showing
small growth that implies that biological science
majors experienced bigger gains than physical
science majors during the REU. This could be
due to biological sciences lacking more physics
knowledge than physical sciences lacking biol-
ogy knowledge at the start of the program.

E. Example: COVID-19 impact on
participant gains
We first administered the BCIS to REU partici-

pants in 2019; however, a worldwide pandemic
interrupted and altered the study’s course, as
safety concerns postponed the 2020 REU. We
offered deferment to those participants we had
accepted to the 2020 REU. Thus, the 2021 REU
cohort consisted of a mix of participants who
were accepted prepandemic (2020; n ¼ 7) and
postpandemic (2021; n¼ 8). Our analysis of survey
data and conversations with participants revealed
that the participants who had applied postpan-
demic (in 2021 and 2022) lacked traditional labora-
tory courses that would have accompanied the
introductory science courses at the home insti-
tutes, while those who had applied prepandemic
(in 2019 and 2020) had those lab courses. This dis-
tinction led us to divide the participant cohorts
into prepandemic and postpandemic groups.
We found that the prepandemic group had a

mean GNL of 0.07 6 0.18, with an effect size of
0.35 (n ¼ 14), and the postpandemic group had
a mean GNL of 0.18 6 0.18, with an effect size of
0.69 (n ¼ 18). A comparison between the 2
groups showed they were significantly different
(2-tailed t test, P ¼ 0.09). These differences are
explained by both larger gains (Fig 5A) and a
greater fraction of students showing gain (Fig 5B)
in the postpandemic group.
A more detailed inspection of this data using

the question classifications (Fig 5C) shows similar,

medium effect sizes, indicating gain for both pre-
and postpandemic cohorts at the higher levels of
Bloom’s taxonomy: create and analyze. However,
there are significant differences at the lower lev-
els of Bloom’s taxonomy, with the prepandemic
group showing negative effect sizes in under-
stand and remember, implying a loss. In contrast,
the postpandemic group shows small, positive
shifts in these classifications.
Together, these results show a distinction

between prepandemic and postpandemic cohorts,
including a 21% increase in the number of partici-
pants who exhibited gain postpandemic, larger
effect sizes for questions classified lower on
Bloom’s taxonomy (understand, remember,
apply) for postpandemic participants, and an
overall 0.34 increase in effect size and 0.11
increase in gains for postpandemic compared
with prepandemic. These results imply educa-
tional disruption has interfered with student edu-
cation, but hands-on, active learning approaches,
such as summer REU experiential learning pro-
grams, may aid in recovery. They suggest that
immersive lab experience benefits students, with
the exposure helping return students to a better,
prepandemic learning state.

V. CONCLUSION
The current concept inventories are lacking

for interdisciplinary fields. To fill this gap, we
created the BCIS. We administered the BCIS to
32 REU participants as a pilot group. By having
different question classifications and subject
material, we could better understand participants’
weak points, including second semester physics
topics, such as electrostatics, pressure, and optics,
as well as applied biological subjects, such as
molecular biology. Also, the BCIS results suggest
that experiential learning through an REU leads
to a higher mean of GNL at the higher end of
Bloom’s taxonomy (create and analyze) than
at the lower end (remember and understand).
Applying the BCIS to traditional lecture courses
would be interesting, because we anticipate
larger gains at the lower end of Bloom’s taxon-
omy. For traditional semester-long (�16 weeks)
courses, it is likely best to apply the BCIS 3 times:
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at the start of the semester, halfway through the
semester, and at the end of the semester (57). The
classification of questions by subject and Bloom’s
taxonomy level allows instructors to determine
what students are struggling with and adjust
course direction at a midway point of a course.
This study suggests that surveys such as the

BCIS are useful tools to evaluate student gains
in interdisciplinary courses and active learning
experiences. However, our results are limited to
a small number of REU participants. Therefore,
we must administer it to more students for a
larger sample size. After the BCIS is robustly tested
on a larger sample size, many potentials open up,
such as (a) building a database of questions, (b)
probing class progression at a midpoint, and
(c) checking student’s previous understanding of

physics and biology with topic-specific concept
inventories. Instructors who want to apply this to
a course or research program can do so by con-
tacting the authors of this study and filling out a
Google form with proof of an instructor’s role.
In conclusion, the BCIS starts to fill the need

for an interdisciplinary method of evaluating
student progress in biophysics courses. It is unbi-
ased in measuring interdisciplinary biology and
physics understanding. It covers various subjects
in physics and biology, allowing understanding
of students’ weak points. Question classifications
based on Bloom’s taxonomy grant the ability to
understand students’ level of knowledge and the
ability to apply that knowledge. In our pilot
study, we found apparent differences in per-
formance on the BCIS between prepandemic
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Fig 5. Applying the BCIS before and after the COVID-19 global pandemic suggests an increased benefit of experiential learning opportuni-
ties for postpandemic REU students. (A) Bar graph shows mean gain and loss for the pre- and postpandemic cohorts, where the error
bars are the standard deviation. (B) Pie charts show fractions of the pre- and postpandemic cohorts with gain and loss. The 4 students
with no change are not shown in the bar charts. (C) In the violin plots, each student is represented by a point. The left side (blue) of
each violin plot represents the prepandemic cohorts, while the right side (violet) of each violin plot represents the postpandemic cohorts.
The effect size (d) under each corresponding distribution shows the differences in the pre-and post-BCIS responses for each distribution.
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and postpandemic REU undergraduate research-
ers. In the future, we will expand the BCIS by add-
ing an extensive data bank of questions, enabling
instructors to customize the balancing of the BCIS
by classification, subject matter, and question
type. A data bank would allow instructors to
build a specialized concept inventory for class,
covering topics that could be more relevant to
specific needs.

VI. LIMITATIONS
This study aimed to introduce the BCIS. The

sample selection from REU students results in a
small sample size and bias toward students
who are self-driven to learn. Further work needs
to be completed to ensure the BCIS questions
probe the expected concept and are interpreted
correctly and validated among a larger pool of
participants. The current work presented in this
article sets a baseline for interdisciplinary concept
inventories and does not include construct valid-
ity, content validity, or face validity (58).

SUPPLEMENTAL MATERIAL
Supplemental sample BCIS questions are available at:

https://doi.org/10.35459/tbp.2023.000256.S1.
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