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ABSTRACT We present a new approach to teaching the concept of osmotic
pressure in physical chemistry courses. Our route is different from the traditional
derivation that hinges on equating chemical potentials. Instead, we resort to the
equivalent, yet more intuitive, concepts of mixing entropy and free energy and use
their relation to the second law of thermodynamics. Our strategy emphasizes the
role of entropically driven forces, which are a principal, yet underappreciated,
theme in physical chemistry and biophysics. In doing so, we have extended the
available examples of entropic forces that can be introduced to undergraduate
chemistry and biology students.
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I. INTRODUCTION
Many liquids spontaneously mix to form homogeneous solutions at

thermodynamic equilibrium, with the predominant contribution to the
free energy of mixing being the gain in entropy. This is an example of an
entropic driving force often used to introduce the concept of entropy
maximization to students studying thermodynamics for the first time;
however, it is not immediately clear where in the mixing process a
mechanical force can be generated. This contrasts many other examples
where entropic forces have a clearer mechanical manifestation. These
examples include the expansion of an ideal gas (1), elasticity of a rubber
band (2, 3), macromolecular association through counterion release (4,
5), undulation forces acting between lipid membranes (6, 7), entropy of
chelation in coordination complexes (8), and emergence of hydrophobic
(9, 10) and depletion (11, 12) forces.
The entropic force driving the mixing of solutions becomes appar-

ent by the action of an osmotic pressure. Historically, the concentra-
tion difference of solutes inside and outside of cells was first realized
to produce a pressure gradient in plants, which leads to water flow
(13–15). The driving force for this process is the tendency to increase
entropy resulting from the mixing of solute and solvent. The flow of
water continues until the concentrations equalize or until the force of
hydrostatic pressure counteracts the flow. Thus, plant cells accumu-
late excess water that generates turgor pressure, defined as the
hydrostatic pressure exerted by the cell’s interior that presses the cell
membrane against the cell wall (3). This force is generated by the dif-
ference in the osmotic pressure of the extracellular and intracellular
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media. The realization of an osmotic pressure
and its analogy to the ideal gas law led to the
first Nobel prize awarded in chemistry, which was
presented to J.H. van ’t Hoff in 1901 (16).
The value of introducing osmotic pressure to

students can be emphasized by demonstrating its
biological and biophysical significance. The intra-
cellular osmotic pressure is actively regulated by
transport of specific ions and other solutes across
cell membranes (3, 17). This allows cells to remain
in an isotonic state, whereby cells control water
flux through the membrane to prevent the poten-
tially lethal swelling or shrinkage of cells upon
exposure to environments with different osmotic
pressure (18). It was further found that unique cel-
lular solutes, sometimes termed “osmolytes” or
“compatible solutes,” are tasked with regulating
the osmotic pressure in cells (19, 20). For example,
in marine animals (e.g., sharks), the combination
of urea and trimethylamine N-oxide is found to
counter the high salinity of the ocean (21). Other
examples of osmoregulation include the activity
of the antidiuretic hormone in human kidneys,
the exertion of turgor pressure in plants, and the
kinetic entrapment of water molecules in extrem-
ophilic microorganisms (17, 20, 22, 23).
Osmotic stress further underlies multiple bio-

physical mechanisms. Its action often dictates the
structure of biological macromolecules under con-
finement, which is critically linked to their cellular
function (24–26). For example, the folding of pro-
teins and their self-association is affected by the
addition of solutes (19, 27–29). Solutes occupy
some of the space available to cellular macromole-
cules, reducing the overall number of possible
configurations, thereby confining and crowding
them; this consequence has therefore been coined
the “crowding” or “excluded-volume” effect. The
restriction of the volume available to macromole-
cules by added solutes generates a compacting
force, sometimes termed a “depletion force,”
which in its simplest description is the osmotic
stress (12). The osmotic pressure also plays a criti-
cal role as a relevant thermodynamic variable
that governs the condensation of cellular organ-
elles that lack membranes (30). Finally, the gener-
ation of osmotic pressure is used in a standard

method that allows the measurement of intermo-
lecular forces acting between macromolecules
(31).
The link between water flow and osmotic pres-

sure also has found widespread medical and
technological implications. For example, the flu-
ids used for irrigating wounds, kidney dialysis,
and storage of contact lenses are all prepared
with an osmotic pressure similar to that in cells,
thereby preventing complications that may arise
from secretion or absorption of excess water
(32–34). In other medical treatments, the genera-
tion of an osmotic pressure gradient is beneficial.
Examples include protection against cerebral
edema by drawing water out of the brain (35)
and the osmotically controlled rate of drug deliv-
ery into the gastrointestinal tract (36, 37).
Finally, students also can be made aware of the

technological role of osmotic pressure in water
desalination. In reverse osmosis, the pressure
required to push water through a semipermeable
membrane must be greater than the osmotic
pressure gradient, which determines the energy
consumption during water purification (38).
The classical experiment to measure the osmotic

pressure, first introduced by botanist W. Pfeffer in
1877, includes a system containing two chambers:
one holding an aqueous solution and the other
pure water (13). The two chambers are separated
by a semipermeable membrane that allows only
water to pass through. The chemical potential of
water in the chamber containing the solute is
lower than that of pure water. Therefore, water
passes spontaneously from the chamber contain-
ing the pure water toward the chamber with the
solution. This process could potentially continue
until all the water passes through because the
chemical potential of the solution is always lower
than that of pure water. However, if the level of
the solution in the chamber rises because of the
added water, the corresponding excess hydro-
static pressure counteracts the flow because the
chemical potential increases under pressure. At
equilibrium, the chemical potential of water in the
two chambers is equal. The added hydrostatic
pressure required to stop the flow of water is
called osmotic pressure (1, 39, 40).
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This description follows the standard way of
introducing osmotic pressure to students in
physical chemistry courses at the undergraduate
level (1, 40, 41). It emphasizes the condition for
equilibrium, requiring that the chemical poten-
tial of water be equal in the two chambers. It
also directly relates osmotic pressure to hydro-
static pressure. In our experience, this correla-
tion leads to students’ bemusement because
the addition of solute to water apparently has
nothing to do with hydrostatic pressure. Even
more relevant, the underlying thermodynamic
mechanism that involves entropy and its maxi-
mization generally is not discussed when present-
ing osmotic pressure. Using chemical potentials, a
concept that is nonintuitive to many students, fur-
ther obscures the mechanism (42, 43). Indeed,
many basic courses that introduce osmotic pres-
sure, particularly to biology and biomedical majors,
cannot assume students’ prior knowledge of the
chemical potential, making the discussion of the
osmotic pressure even more challenging.
In recent years, we have adopted an alternative

approach to presenting the osmotic pressure that
emphasizes its entropic nature without directly
involving the effect of hydrostatic pressure on the
chemical potential. We show that the condition
for equilibrium can be discussed in terms of
reversible work required to transfer water to and
from the solution. We also demonstrate the fun-
damental role of entropy in this process. This
topic is presented after fundamental thermody-
namic principles have been introduced, including
the first and second laws, the Gibbs free energy,
and some simple examples of Boltzmann entropy.
This approach circumvents the need to present

chemical potentials before teaching osmotic pres-
sure. In fact, in recent years, we have successfully
presented the fundamentals of osmotic pressure
to biomedical students without introducing the
chemical potential. Moreover, we find that this
approach is more readily understandable for most
chemistry, biology, and biomedical students. An
additional key advantage is that osmotic pressure
can be presented as an example of entropic
forces, with other examples being the expansion
of an ideal gas, the elasticity of a rubber band,
and the hydrophobic folding of a protein.

Here, we present our approach to introducing
osmotic pressure. For comprehensiveness, we
begin by recounting the current standard deriva-
tion found in most physical chemistry textbooks.
We then introduce some necessary fundamental
concepts that typically are presented earlier in a
first course in thermodynamics or other introduc-
tory courses. These fundamentals include the
derivation of expressions for the mixing entropy
and free energy of ideal gases or solutions. In
addition, we must familiarize students with the
link between free energy and reversible work in
isothermal processes. Having described these
prerequisites, we present our new strategy to
derive the osmotic pressure.

II. STANDARD APPROACH: USING
CHEMICAL POTENTIALS
In Figure 1, only water can pass through the

semipermeable membrane so that at equilib-
rium, the chemical potential of water must be
equal in the left (l) and right (r) compartments:

ml
w ¼ mr

w (1)

The chemical potential of water in an ideal
mixture can be expressed as:

Fig 1. Schematic of pure water (left) and an aqueous solution
(right) separated by a semipermeable membrane that allows only
water to pass. The solute in the aqueous mixture is shown in pink.
At equilibrium, the chemical potential of water is equal on both
sides of the membrane. The difference in the solution levels in the
two compartments results in a net applied pressure, P, that coun-
teracts the flow of water across the semipermeable membrane.
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mmix
w T; Pð Þ ¼ mpure

w T ; Pð Þ þ RT lnxw (2)

where mpure
w is the chemical potential of pure

water, R is the gas constant, T is absolute tem-
perature, P is pressure, and xw is the mole frac-
tion of water in the mixture. This expression
was proposed on the basis of experimental
observations, culminating in Raoult’s law (44).
Many textbooks present Eq. 2 as an empirical
finding without relating it to the free energy
from which it can be derived (1, 40). Notably,
Eq. 2 indicates that the chemical potential of
water in a mixture will always be lower than
that of pure water under the same conditions.
This conclusion stems from the definite nega-
tive sign of the RTlnxw term, which is related to
the entropy gained (or reduction in free
energy) from mixing solute and solvent. We
will return to discuss this fundamental point in
subsequent sections.
Combining Eqs. 1 and 2, we find that under

the same temperature and pressure:

ml
w T ; Pð Þ > mr;pure

w T ; Pð Þ þ RT lnxw (3)

Thus, pure water from the left compartment
should flow toward the mixture in the right
compartment; however, when water is drawn
from the left compartment, the water level, h,
rises on the right. This leads to an added
hydrostatic pressure, π, exerted on the solu-
tion. This pressure is proportional to the mass
of the excess solution, rd V, where r is the
density of the mixture and d V is the volume of
excess solution. The weight of the excess solu-
tion column acts on a cross-sectional area a ¼
d V/h so that the acting pressure is π ¼ rgh,
with g being the gravitational acceleration
constant.
For dilute solutions, the excess water leads

to a small added pressure, which increases
the chemical potential of water by dmw �
vwd P, where vw is the partial molar volume of
water. At equilibrium, this increase in chemi-
cal potential exactly negates the decrease in
chemical potential because of the RTlnxw term so
that Eq. 1 is satisfied, and

ml
w T ; Pð Þ ¼ mr;pure

w T ; Pð Þ þ vwd Pþ RT lnxw

(4)

Realizing that ml
w T ; Pð Þ ¼ mr;pure

w ðT ; PÞ and that,
by definition, d P ¼ π,

vwπ ¼ �RT lnxw (5)

Finally, expressing xw by the mole fraction of
the solute, xw ¼ 1 � xs, and applying the
approximation ln(1 � xs) � �xs for dilute solu-
tions, we arrive at

vwπ ¼ xsRT (6)

By further approximating xs/vw with solute molar
concentration, Cs, we arrive at the celebrated
van ’t Hoff relation for osmotic pressure (16, 45):

π ¼ CsRT (7)

Eq. 7 strongly resembles the venerable ideal
gas equation of state, P ¼ (n/V)RT. This analogy
was used by van ’t Hoff to originally develop
the expression for osmotic stress (45).

III. INTRODUCTION TO MIXING
ENTROPY
In our new approach to presenting osmotic

pressure, we begin by familiarizing students with
the concept of mixing entropy. We present two
model systems that can be used to derive the
expression for the entropy of mixing. The first
involves mixing two ideal gases. This example
avoids combinatorics and underscores the equiva-
lence between mixing entropy and the entropy
associated with expansion (46). It also clarifies the
basis for the ideal gas analogy used originally by
van ’t Hoff to derive the expression for osmotic
pressure (16). The second, more advanced exam-
ple directly considers the condensed state by
applying a lattice model to the mixing of two com-
ponents to form an ideal solution. Both examples
follow changes in the number of accessible micro-
states, X, which is related to entropy, S, through
Boltzmann’s expression:

S ¼ kBlnX (8)

where kB is Boltzmann’s constant. We present
both model systems and show that the commonly
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used term for ideal mixing entropy is recovered in
both cases. The reader may choose to familiarize
students with one or both examples.

A. Mixing of ideal gases: a first
example
Begin by describing the entropy of an ideal

gas and how it changes with the volume in
which it is confined. The number of microstates
for one gas molecule, X1, increases linearly with
volume, X1 � V, because the particle can be
placed anywhere within the system. Thus, dou-
bling the volume necessarily doubles the num-
ber of possibilities for placing the particle. Ideal
gas particles do not interact, so a second gas
molecule introduced into the system will have
the same number of accessible states because it
also can be placed anywhere within the volume.
Thus, for each position of the first particle, the
second particle can take any position. Corre-
spondingly, the total number of microstates is
proportional to the product of microstates of

each particle, X2 � X2
1, so that X2 � V2. To make

the proportionality exact, one should also consider
the indistinguishability of particles; this point is fur-
ther discussed in the following section. By the
same reasoning, the total number of microstates

available to N molecules is XN � XN
1 � VN, and

the entropy of the gas has the following form:

S � NkBlnV (9)

Figure 2A shows the mixing of Nred “red”
ideal gas particles with Nblue “blue” ideal gas
particles, upon removing a partition. Before
mixing, the two gases have the same tempera-
ture and number density. Because both gases
do not interact, the total increase in entropy
that results from mixing can be written as the
sum of the individual changes in the entropy
of each gas due to their expansion into the
neighboring compartment:

DSmix ¼ DSred þ DSblue (10)

As the red gas expands to the right, the num-
ber of microstates for each red gas particle
increases by a factor of Vtotal/Vleft, where Vleft is

the volume of the left compartment before mixing
and Vtotal ¼ Vleft þ Vright is the available volume to
the gas after expansion. Therefore, the change in
the entropy of the red gas can be written as:

DSred ¼ NredkBln
Vtotal
Vleft

(11)

Using a similar line of reasoning for the expan-
sion of the blue gas, the entropy gained from
mixing both gases is as follows:

DSmix ¼ NredkBln
Vtotal
Vleft

þ NbluekBln
Vtotal
Vright

(12)

Because the temperature and density of the
gases are equal before and after mixing, we
can replace volume ratios by mole fractions,
Vleft/Vtotal ¼ xred and Vright/Vtotal ¼ xblue. Eq. 12
becomes:

DSmix ¼ �NtotalkBðxredlnxred þ xbluelnxblueÞ
(13)

where Ntotal¼ Nredþ Nblue. Eq. 13 is the commonly
known expression for the mixing entropy of two
ideal gases (1). Moreover, because both gases are
ideal, DHmix ¼ 0, and the change in the Gibbs free
energy due to mixing is simply:

DGmix ¼ �TDSmix ¼
NtotalkBTðxredlnxred þ xbluelnxblueÞ (14)

The process of mixing reduces the free
energy, DG < 0. This is a result of the second
law of thermodynamics that dictates that in

Fig 2. Two realizations of mixing entropy. (A) Mixing two ideal
gasses. (B) Mixing two liquids to form an ideal solution. Both pro-
cesses are isothermal and isobaric.
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any spontaneous process, entropy must increase.
At constant temperature and pressure, this is
equivalent to the minimization of G.

B.Mixing ideal solutions: a second
example
Figure 2B shows the isothermal mixing of

Nred “red” particles with Nblue “blue” particles,
on a lattice to form an ideal solution. The lattice
is introduced as a means to derive a tractable
number of microstates for the system, but the
same result can be obtained from a less restric-
tive (off-lattice) representation (47). The num-
ber of microstates is equivalent to the number
of ways the particles can be arranged on the
lattice, considering that each type of particle is
indistinguishable from other particles of the
same color. In the mixture, combinatorics states
that this number can be represented by the
corresponding binomial coefficient:

X ¼ Ntotal

Nred

� �
¼ Ntotal

Nblue

� �
(15)

Before mixing, both compartments contain
only one kind of particle. Swapping between
positions of two identical particles creates a
state indistinguishable from that before the
swap. Consequently, the binomial coefficient in
these pure systems is simply unity. Using S ¼
kBln X and Eq. 15, we arrive at the change in
entropy upon mixing:

DSmix ¼ kBln
Ntotal!

Nred!Nblue!
(16)

Using the Sterling approximation, lnx! � x lnx �
x, Eq. 16 reduces to Eq. 13, which also can be
expressed in terms of the volume accessible to
each component before and after mixing:

DSmix ¼ NredkBln
Vtotal
Vleft

þ NbluekBln
Vtotal
Vright

(17)

Eq. 17 emphasizes that the change in entropy
of each component is related to the volume,
similarly to the entropy of an ideal gas, so that

in the limit of solutions dilute in one of the
components:

S � NkBlnV (18)

C. Free energy as reversible work
Our new approach also requires students to

be familiar with the link between free energy
and reversible work in processes performed at
constant temperature. One approach to derive
this relation is as follows (1, 40). As with any
process, the requirement of energy conserva-
tion applies also to reversible processes, so
that:

dE � dQrev � dWrev ¼ 0 (19)

where E is the total internal energy of the sys-
tem, Qrev is the reversible heat exchanged with
the surroundings, and Wrev is reversible work
(we defined positive work as work performed
on the system, and heat transferred to the sys-
tem as positive heat). Furthermore, for a revers-
ible process, the Clausius inequality becomes
an equality:

dS ¼ dQrev

T
(20)

Combining Eqs. 19 and 20:

dWrev ¼ dE � TdS ¼ dA (21)

where A is the Helmholtz free energy. There-
fore, for a reversible process at constant T, the
change in free energy equals the total (sum of
PV and non-PV) work. We note that the Helm-
holtz free energy is the most appropriate state
function in our subsequent discussion because
Eq. 21 requires only constant temperature. An
analogous version of Eq. 21 that uses the Gibbs
free energy G, instead of A, requires that in
addition to temperature, the pressure will also
be constant:

dWrev; non-PV ¼ dH � TdS ¼ dG (22)

with dWrev, non-PV involving only the work that
is not associated with changes in system

Entropy approach to osmotic pressure
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volume. Because students are usually more
familiar with the Gibbs free energy, we use G in
the following derivations, even though the
requirement for constant pressure is only
approximately satisfied in the systems dis-
cussed here. The same result can be obtained
by using Eq. 21. Moreover, for an ideal solution,
DHmix ¼ DEmix ¼ 0; therefore, in this case DA ¼
DG, and either of the free energies can be used
in the derivation.

IV. NEW APPROACH TO OSMOTIC
PRESSURE: USING MIXING ENTROPY
Figure 3A shows two compartments sepa-

rated by a mobile semipermeable membrane
that allows only water to pass through; the
compartment on the left contains pure water,
whereas the one on the right contains an ideal
mixture of solute in water. Both compartments
are maintained at equal temperature. Because
the membrane is allowed to move, the parti-
tion will move to the left. This is because water
will flow from the left compartment to the right
compartment to increase the number of micro-
states of the system, which in turn increases its
entropy and reduces its free energy. Initially,
before the partition has time to move, the net
accumulation of water in the right compart-
ment increases the number density, thereby
elevating the pressure in that compartment.
This pressure gradient between the two com-
partments forces the partition to move to the

left until it reaches the left wall. Stated differ-
ently, the partition moves because at any other
position, the free energy can be further
reduced by mixing more water with solute. The
reverse process (water leaving the right compart-
ment and moving to the left) is, in principle, pos-
sible; yet, it is highly improbable because it
strongly (exponentially) reduces the number of
available states. This process underlines the statis-
tical nature of the second law.
To quantify the force exerted on the mem-

brane, f, an external force is added that coun-
teracts the increase in the volume of the right
compartment. Imagine physically exerting this
force on the membrane and stopping it from
moving (Fig 3B). Infinitesimal changes in the
position of the membrane, dz, require revers-
ible work performed on the partition, dWrev ¼
�fdz. This reversible work is equal to changes
in the free energy of the two-compartment sys-
tem, dWrev ¼ dG. Using Eq. 22:

fdz ¼ �dG ¼ TdS� dH (23)

Because for mixing of ideal solutions dH ¼ 0,
fdz ¼ TdS. From Eq. 18, which corresponds to
the entropy of a dilute component in an ideal
solution, we obtain:

fdz ¼ NskBTdlnV ¼ NskBT

V
dV (24)

where Ns is the number of solute molecules.
Recognizing that dV/dz is the membrane cross-
section area, a, and that f/a is the pressure
exerted on the membrane, π, we recover the
expression for the osmotic pressure in Eq. 7:

π ¼ NskBT

V
¼ CsRT (25)

This result is relevant for dilute solutions,
where free energy depends most strongly on
mixing entropy, which in turn depends linearly
on solute concentration. Concentrated or non-
ideal solutions can be treated by a similar
approach that uses the relevant expressions for
dGmix. In the Supplemental Material, we present
two examples of how an expression for the

Fig 3. Osmotic pressure as an entropic force. (A) The solution on
the right-hand side exerts a force, f, on a mobile semipermeable
membrane and drives the membrane as far left as possible. (B)
Virtual person applies an equal and opposing force, f, that prevents
the membrane from moving. Orange circles represent the solute,
and the blue background represents water.
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osmotic pressure can be recovered from rele-
vant expressions for the free energy of mixing
corresponding to different kinds of solutions.
These examples demonstrate how, for other
types of solutions, interactions must be consid-
ered, and therefore DHmix and DEmix are gener-
ally nonzero. These additional derivations of
osmotic pressure are presented as exercises, from
which students can appreciate how intermolecu-
lar interactions between solution components
introduce nonideality in the osmotic pressure.
The derivations also introduce students to the
virial expansion and its coefficients in the context
of osmotic pressures.

V. CONCLUDING REMARKS
We presented two approaches for deriving the

equation for osmotic pressure. The standard
approach, found in most textbooks and even on
Wikipedia, is based on equating the chemical
potential of water throughout the system (1, 40,
48). In contrast, our new approach directly invokes
the role of entropy in generating the osmotic
pressure. This approach offers several advantages
over the standard method.

(a) Our derivation bypasses the requirement for
students to be familiar with the concept of
chemical potential, which, in our experience,
is often introduced late in the course sylla-
bus (or, as often happens, not at all) and is,
many times, found to be nonintuitive by stu-
dents (42, 43).

(b) Our approach emphasizes entropy as the
underlying mechanism for the force gener-
ated by osmotic stress; this serves an oppor-
tunity to introduce students to the concept
of entropically generated forces, which are
valuable in multiple biophysical mechanisms.

(c) The starting point for our strategy uses the
relevant expression for the free energy of
mixing, and the approach is easily generaliz-
able to other nonideal cases and affords a
transparent way to include additional interac-
tion terms and to appreciate their effect on
the osmotic pressure.

(d) It is simple to generalize this approach to
other entropic forces; for example, the

force exerted by polymers acting as entro-
pic springs follows a somewhat similar
derivation (2, 3).

We encourage educators to implement our
suggested derivation for osmotic pressure and
witness first-hand whether students find it
more approachable.

SUPPLEMENTAL MATERIAL
All Supplemental Material is available at: https://doi.org/10.

35459/tbp.2025.000282.S1.

AUTHOR CONTRIBUTIONS
DH and IS were involved in the conceptualization of this

article; IS, DH, and YNL completed the writing, reviewing, and
editing; IS handled visualization concepts; and DH supervised the
project and managed project administration and funding
acquisition. All authors have read and agreed to the published
version of the manuscript.

ACKNOWLEDGMENTS
This paper is dedicated to the inquisitive students that

participated in our physical chemistry courses in recent years.
Financial support from the Israel Science Foundation (ISF Grant
No 1207/21) is gratefully acknowledged. The Fritz Haber Research
Center is supported by the Minerva Foundation, Munich,
Germany. The authors declare no competing interests.

REFERENCES
1. Castellan, G. W. 1983. Physical Chemistry. Addison-Wesley Publish-

ing Company, Reading, Massachusetts.

2. De Gennes, P.-G. 1979. Scaling Concepts in Polymer Physics. Cornell

University Press, Ithaca, New York.

3. Phillips, R., J. Kondev, J. Theriot, and H. Garcia. 2012. Physical Biol-

ogy of the Cell. Garland Science, New York, New York.

4. Harries, D., S. May, and A. Ben-Shaul. 2013. Counterion release in

membrane–biopolymer interactions. Soft Matter 9:9268–9284.

5. deHaseth, P. L., T. M. Lohman, and M. T. Record, Jr. 1977. Nonspe-

cific interaction of lac repressor with DNA: an association reaction

driven by counterion release. Biochemistry 16:4783–4790.

6. Helfrich, W. 1978. Steric interaction of fluid membranes in multilayer

systems. Z Naturforsch A 33:305–315.

7. Sornette, D., and N. Ostrowsky. 1994. Lamellar phases: effect of fluc-

tuations (theory). In Micelles, Membranes, Microemulsions, and

Monolayers. W. M. Gelbart, A. Ben-Shaul, and D. Roux, editors.

Springer Science and Business Media, New York, pp. 251–302.

8. Schwarzenbach, G. 1952. Der chelateffekt. Helv Chim Acta

35:2344–2359.

9. Meyer, E. E., K. J. Rosenberg, and J. Israelachvili. 2006. Recent pro-

gress in understanding hydrophobic interactions. Proc Natl Acad Sci

U S A 103:15739–15746.

10. Chandler, D. 2005. Interfaces and the driving force of hydrophobic

assembly. Nature 437:640–647.

11. Sapir, L., and D. Harries 2015. Is the depletion force entropic? Molec-

ular crowding beyond steric interactions. Curr Opin Colloid Interface

Sci 20:3–10.

12. Asakura, S., and F. Oosawa. 1958. Interaction between particles sus-

pended in solutions of macromolecules. J Polym Sci 33:183–192.

Entropy approach to osmotic pressure

Shumilin et al. The Biophysicist 2025; 6(2). DOI: 10.35459/tbp.2025.000282 8

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-04-24

https://doi.org/10.35459/tbp.2024.000282.S1
https://doi.org/10.35459/tbp.2024.000282.S1


13. Pfeffer, W. 1877. Osmotische Untersuchungen: Studien zur Zellme-

chanik. Wilhelm Engelmann, Leipzig, Germany.

14. Eyster, H. C. 1943. Osmosis and osmotic pressure. Bot Rev

9:311–324.

15. Peters, W. S., and M. Knoblauch. 2022. How M€unch’s adaptation of

Pfeffer’s circulating water flow became the pressure-flow theory,

and the resulting problems—a historical perspective. J Plant Physiol

272:153672.

16. van’t Hoff, J. H. 1901. Osmotic pressure and chemical equilibrium.

Nobel Lecture 13.

17. Alberts, B., R. Heald, A. Johnson, D. Morgan, M. Raff, K. Roberts, and

P. Walter. 2022. Molecular Biology of the Cell: Seventh International

Student Edition with Registration Card. WW Norton and Company,

New York, New York.

18. Bourque, C. W. 2008. Central mechanisms of osmosensation and

systemic osmoregulation. Nat Rev Neurosci 9:519–531.

19. Hochachka, P. W., and G. N. Somero. 2002. Biochemical Adaptation:

Mechanism and Process in Physiological Evolution. Oxford Univer-

sity Press, Oxford, United Kingdom.

20. Burg, M. B. 1995. Molecular basis of osmotic regulation. Am J Physio.

Renal Physiol 268:983–996.

21. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero.

1982. Living with water stress: evolution of osmolyte systems. Sci-

ence 217:1214–1222.

22. Olgenblum, G. I., B. O. Hutcheson, G. J. Pielak, and D. Harries. 2024.

Protecting proteins from desiccation stress using molecular glasses

and gels. Chem Rev 124:5668–5694.

23. Romero-Perez, P. S., Y. Dorone, E. Flores, S. Sukenik, and S.

Boeynaems. 2023. When phased without water: biophysics of cellu-

lar desiccation, from biomolecules to condensates. Chem Rev

123:9010–9035.

24. Wennerström, H., and M. Oliveberg. 2022. On the osmotic pressure

of cells. QRB Discov 3:1–10.

25. Zheng, S., Y. Li, Y. Shao, L. Li, and F. Song. 2024. Osmotic pressure

and its biological implications. Int J Mol Sci 25:3310.

26. Zhou, H.-X., D. Kota, S. Qin, and R. Prasad. 2024. Fundamental

aspects of phase-separated biomolecular condensates. Chem Rev

124:8550–8595.

27. Stewart, C. J., G. I. Olgenblum, A. Propst, D. Harries, and G. J. Pielak.

2023. Resolving the enthalpy of protein stabilization by macromo-

lecular crowding. Protein Sci 32:e4573.

28. Minton, A. P. 2013. Quantitative assessment of the relative contribu-

tions of steric repulsion and chemical interactions to macromolecu-

lar crowding. Biopolymers 99:239–244.

29. Speer, S. L., C. J. Stewart, L. Sapir, D. Harries, and G. J. Pielak. 2022.

Macromolecular crowding is more than hard-core repulsions. Annu

Rev Biophys 51:267–300.

30. Zhou, H.-X., V. Nguemaha, K. Mazarakos, and S. Qin. 2018. Why do

disordered and structured proteins behave differently in phase sep-

aration? Trends Biochem Sci. 43:499–516.

31. Parsegian, V., R. Rand, N. Fuller, and D. Rau. 1986. Osmotic stress for

the direct measurement of intermolecular forces. In Methods in

Enzymology, vol. 127. ed. Packer, L. Elsevier, Amsterdam, Nether-

lands, pp. 400–416.

32. Tyagi, R., K. Donaldson, C. Loftus, and J. Jallo. 2007. Hypertonic

saline: a clinical review. Neurosurg Rev 30:277–290.

33. Szczotka-Flynn, L. B., E. Pearlman, and M. Ghannoum. 2010. Micro-

bial contamination of contact lenses, lens care solutions, and their

accessories: a literature review. Eye Contact Lens 36:116–129.

34. Wan, S., M. A. Roberts, and P. Mount. 2016. Normal saline versus

lower-chloride solutions for kidney transplantation. Cochrane Data-

base Syst Rev 8:CD010741.

35. Jha, S. K. 2003. Cerebral edema and its management. Med J Armed

Forces India 59:326–331.

36. Schiller, L. R., M. Emmett, C. A. Santa Ana, and J. S. Fordtran. 1988.

Osmotic effects of polyethylene glycol. Gastroenterology

94:933–941.

37. Gupta, B. P., N. Thakur, N. P. Jain, J. Banweer, and S. Jain. 2010.

Osmotically controlled drug delivery system with associated drugs.

J Pharm Pharm Sci 13:571–588.

38. Greenlee, L. F., D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin.

2009. Reverse osmosis desalination: water sources, technology, and

today’s challenges.Water Res 43:2317–2348.

39. Dill, K., and S. Bromberg. 2010. Molecular Driving Forces: Statistical

Thermodynamics in Biology, Chemistry, Physics, and Nanoscience.

Garland Science, New York, New York.

40. Atkins, P. W. 1978. Physical Chemistry. Oxford University Press,

Oxford, United Kingdom.

41. Levine, I. N. 2009. Physical Chemistry. McGraw-Hill Companies, New

York, New York.

42. Job, G., and F. Herrmann. 2006. Chemical potential—a quantity in

search of recognition. Eur J Phys 27:353–371.

43. Callen, H. B. 1991. Thermodynamics and an Introduction to Thermo-

statistics. John Wiley and Sons, Hoboken, New Jersey.

44. Raoult, F.-M. 1887. Loi générale des tensions de vapeur des dissol-

vants. C R Hebd Seances Acad Sci 104:1430–1433.

45. van’t Hoff, J. H. 1995. The role of osmotic pressure in the analogy

between solutions and gases. J Membr Sci 100:39–44.

46. Ben-Naim, A. 2012. Entropy and the Second Law: Interpretation and

Misss-Interpretationsss. World Scientific Publishing Company, Singa-

pore, Republic of Singapore.

47. Hill, T. L. 1986. An Introduction to Statistical Thermodynamics.

Dover Publications, New York, New York.

48. Wikipedia. 2024. Osmotic pressure. Accessed 4 September 2024.

https://en.wikipedia.org/wiki/Osmotic_pressure.

Entropy approach to osmotic pressure

Shumilin et al. The Biophysicist 2025; 6(2). DOI: 10.35459/tbp.2025.000282 9

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-04-24

https://en.wikipedia.org/wiki/Osmotic_pressure

